1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
2 | // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. |
---|
3 | // See LICENSE.txt for details. |
---|
4 | |
---|
5 | #ifndef _GEOMETRYUTILS_H_ |
---|
6 | #define _GEOMETRYUTILS_H_ |
---|
7 | |
---|
8 | #include <frams/model/model.h> |
---|
9 | #include <frams/model/modelparts.h> |
---|
10 | #include <frams/util/3d.h> |
---|
11 | #include <frams/util/list.h> |
---|
12 | |
---|
13 | |
---|
14 | /*Binary literals like 0b010 are standardized only in C++14. We use macros as they are compatible with older compilers too. |
---|
15 | |
---|
16 | 3-bit numbers are used when iterating through octants in a 3D space. Example: when creating points that cover the surface |
---|
17 | of an ellipsoid, the points are only created for the positive octant (x, y, and z coordinates are positive). Points in |
---|
18 | the remaining 7 octants are created by reflecting points from the positive octant through the appropriate planes defined by |
---|
19 | pairs of axes. |
---|
20 | |
---|
21 | 2-bit numbers are used for 2D. Example: cylinders are aligned along the x axis so that both bases are parallel to |
---|
22 | the yz plane. When points are created along the edge of the base (these will be used later to create points along the side |
---|
23 | of the cylinder), only y and z axes are important, so quadrants of the 2D are sufficient. Just as in the 3D example above, |
---|
24 | only points for the positive quadrant, QuadrantYZ, are created, and points of the remaining quadrants are created by reflection. |
---|
25 | QuadrantXY and QuadrantZX enumerations are never used and are provided only for completeness. |
---|
26 | */ |
---|
27 | #define b000 0 |
---|
28 | #define b01 1 |
---|
29 | #define b001 1 |
---|
30 | #define b10 2 |
---|
31 | #define b010 2 |
---|
32 | #define b100 4 |
---|
33 | #define b110 6 |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | namespace CuboidFaces |
---|
38 | { |
---|
39 | enum Face |
---|
40 | { |
---|
41 | NEGATIVE_X = 0, |
---|
42 | POSITIVE_X = 1, |
---|
43 | NEGATIVE_Y = 2, |
---|
44 | POSITIVE_Y = 3, |
---|
45 | NEGATIVE_Z = 4, |
---|
46 | POSITIVE_Z = 5, |
---|
47 | FIRST = 0, |
---|
48 | NUMBER = 6 |
---|
49 | }; |
---|
50 | |
---|
51 | inline bool isPositive(Face f) { return f & b001; } |
---|
52 | inline bool isNegative(Face f) { return !isPositive(f); } |
---|
53 | inline bool isX(Face f) { return (f & b110) == b000; } |
---|
54 | inline bool isY(Face f) { return (f & b110) == b010; } |
---|
55 | inline bool isZ(Face f) { return (f & b110) == b100; } |
---|
56 | } |
---|
57 | |
---|
58 | namespace CylinderBases |
---|
59 | { |
---|
60 | enum Base |
---|
61 | { |
---|
62 | NEGATIVE_X = 0, |
---|
63 | POSITIVE_X = 1, |
---|
64 | FIRST = 0, |
---|
65 | NUMBER = 2 |
---|
66 | }; |
---|
67 | |
---|
68 | inline bool isPositive(Base b) { return b & b001; } |
---|
69 | inline bool isNegative(Base b) { return !isPositive(b); } |
---|
70 | } |
---|
71 | |
---|
72 | namespace QuadrantsXY |
---|
73 | { |
---|
74 | enum QuadrantXY |
---|
75 | { |
---|
76 | NEGATIVE_X_NEGATIVE_Y = 0, |
---|
77 | NEGATIVE_X_POSITIVE_Y = 1, |
---|
78 | POSITIVE_X_NEGATIVE_Y = 2, |
---|
79 | POSITIVE_X_POSITIVE_Y = 3, |
---|
80 | FIRST = 0, |
---|
81 | NUMBER = 4 |
---|
82 | }; |
---|
83 | |
---|
84 | inline bool isPositiveX(QuadrantXY q) { return (q & b10) != 0; } |
---|
85 | inline bool isNegativeX(QuadrantXY q) { return !isPositiveX(q); } |
---|
86 | inline bool isPositiveY(QuadrantXY q) { return q & b01; } |
---|
87 | inline bool isNegativeY(QuadrantXY q) { return !isPositiveY(q); } |
---|
88 | } |
---|
89 | |
---|
90 | namespace QuadrantsYZ |
---|
91 | { |
---|
92 | enum QuadrantYZ |
---|
93 | { |
---|
94 | NEGATIVE_Y_NEGATIVE_Z = 0, |
---|
95 | NEGATIVE_Y_POSITIVE_Z = 1, |
---|
96 | POSITIVE_Y_NEGATIVE_Z = 2, |
---|
97 | POSITIVE_Y_POSITIVE_Z = 3, |
---|
98 | FIRST = 0, |
---|
99 | NUMBER = 4 |
---|
100 | }; |
---|
101 | |
---|
102 | inline bool isPositiveY(QuadrantYZ q) { return (q & b10) != 0; } |
---|
103 | inline bool isNegativeY(QuadrantYZ q) { return !isPositiveY(q); } |
---|
104 | inline bool isPositiveZ(QuadrantYZ q) { return q & b01; } |
---|
105 | inline bool isNegativeZ(QuadrantYZ q) { return !isPositiveZ(q); } |
---|
106 | } |
---|
107 | |
---|
108 | namespace QuadrantsZX |
---|
109 | { |
---|
110 | enum QuadrantZX |
---|
111 | { |
---|
112 | NEGATIVE_Z_NEGATIVE_X = 0, |
---|
113 | NEGATIVE_Z_POSITIVE_X = 1, |
---|
114 | POSITIVE_Z_NEGATIVE_X = 2, |
---|
115 | POSITIVE_Z_POSITIVE_X = 3, |
---|
116 | FIRST = 0, |
---|
117 | NUMBER = 4 |
---|
118 | }; |
---|
119 | |
---|
120 | inline bool isPositiveZ(QuadrantZX q) { return (q & b10) != 0; } |
---|
121 | inline bool isNegativeZ(QuadrantZX q) { return !isPositiveZ(q); } |
---|
122 | inline bool isPositiveX(QuadrantZX q) { return (q & b01) != 0; } |
---|
123 | inline bool isNegativeX(QuadrantZX q) { return !isPositiveX(q); } |
---|
124 | } |
---|
125 | |
---|
126 | namespace Octants |
---|
127 | { |
---|
128 | enum Octant |
---|
129 | { |
---|
130 | NEGATIVE_X_NEGATIVE_Y_NEGATIVE_Z = 0, |
---|
131 | NEGATIVE_X_NEGATIVE_Y_POSITIVE_Z = 1, |
---|
132 | NEGATIVE_X_POSITIVE_Y_NEGATIVE_Z = 2, |
---|
133 | NEGATIVE_X_POSITIVE_Y_POSITIVE_Z = 3, |
---|
134 | POSITIVE_X_NEGATIVE_Y_NEGATIVE_Z = 4, |
---|
135 | POSITIVE_X_NEGATIVE_Y_POSITIVE_Z = 5, |
---|
136 | POSITIVE_X_POSITIVE_Y_NEGATIVE_Z = 6, |
---|
137 | POSITIVE_X_POSITIVE_Y_POSITIVE_Z = 7, |
---|
138 | FIRST = 0, |
---|
139 | NUMBER = 8 |
---|
140 | }; |
---|
141 | |
---|
142 | inline bool isPositiveX(Octant o) { return (o & b100) != 0; } |
---|
143 | inline bool isNegativeX(Octant o) { return !isPositiveX(o); } |
---|
144 | inline bool isPositiveY(Octant o) { return (o & b010) != 0; } |
---|
145 | inline bool isNegativeY(Octant o) { return !isPositiveY(o); } |
---|
146 | inline bool isPositiveZ(Octant o) { return o & b001; } |
---|
147 | inline bool isNegativeZ(Octant o) { return !isPositiveZ(o); } |
---|
148 | } |
---|
149 | |
---|
150 | namespace GeometryUtils |
---|
151 | { |
---|
152 | double pointPosition(const int pointIndex, const int numberOfPoints); |
---|
153 | double pointOnAxis(const double scale, const double position); |
---|
154 | double pointOnAxis(const double scale, const int pointIndex, const int numberOfPoints); |
---|
155 | double combination(const double value1, const double value2, const double position); |
---|
156 | double combination(const double value1, const double value2, const int pointIndex, const int numberOfPoints); |
---|
157 | bool isPointInsideModelExcludingPart(const Pt3D &point, const Model *model, const int excludedPartIndex); |
---|
158 | bool isPointInsideModel(const Pt3D &point, const Model &model); |
---|
159 | bool isPointInsidePart(const Pt3D &point, const Part *part); |
---|
160 | bool isPointStrictlyInsidePart(const Pt3D &point, const Part *part); |
---|
161 | bool isPointInsideEllipsoid(const Pt3D &point, const Part *part); |
---|
162 | bool isPointStrictlyInsideEllipsoid(const Pt3D &point, const Part *part); |
---|
163 | bool isPointInsideCuboid(const Pt3D &point, const Part *part); |
---|
164 | bool isPointStrictlyInsideCuboid(const Pt3D &point, const Part *part); |
---|
165 | bool isPointInsideCylinder(const Pt3D &point, const Part *part); |
---|
166 | bool isPointStrictlyInsideCylinder(const Pt3D &point, const Part *part); |
---|
167 | void findSizesAndAxesOfPointsGroup(SListTempl<Pt3D> &points, Pt3D &sizes, Orient &axes); |
---|
168 | void findSizeAndAxisOfPointsGroup(const SListTempl<Pt3D> &points, double &size, Pt3D &axis); |
---|
169 | double findTwoFurthestPoints(const SListTempl<Pt3D> &points, int &index1, int &index2); |
---|
170 | void createAxisFromTwoPoints(Pt3D &axis, const Pt3D &point1, const Pt3D &point2); |
---|
171 | void orthographicProjectionToPlane(SListTempl<Pt3D> &points, const Pt3D &planeNormalVector); |
---|
172 | double pointDistanceToPlane(const Pt3D &point, const Pt3D &planeNormalVector); |
---|
173 | void getRectangleApicesFromCuboid(const Part *part, const CuboidFaces::Face face, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4); |
---|
174 | void getRectangleApices(const double width, const double height, const Pt3D &position, const Orient &orient, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4); |
---|
175 | void getNextEllipseSegmentationPoint(const double d, const double a, const double b, double &x, double &y); |
---|
176 | double ellipsoidArea(const Pt3D &sizes); |
---|
177 | double ellipsoidArea(const double a, const double b, const double c); |
---|
178 | double ellipsePerimeter(const double a, const double b); |
---|
179 | |
---|
180 | double calculateSolidVolume(const Part *part); |
---|
181 | bool isSolidPartScaleValid(const Part::Shape &partShape, const Pt3D &scale, bool ensureCircleSection); |
---|
182 | |
---|
183 | /** |
---|
184 | * @brief Adds anchor to the specified Model. |
---|
185 | * @details An anchor has two functions. First is to provide Model consistency. Some functions in |
---|
186 | * GeometryTestUtils namespace requires Model passed to them as an argument to contain at |
---|
187 | * least one Part. All new Parts are bonded to the rest of Model using Joint connecting them |
---|
188 | * with first Part of Model. Second is to provide reference which helps to understand Model |
---|
189 | * position, scale and orientation. Anchor is built from four Parts: small sphere placed in |
---|
190 | * global coordinate system origin and three cuboids visualising global coordinate system |
---|
191 | * axes. |
---|
192 | * @see addAxesToModel. |
---|
193 | * @param[in] model Owner of Parts to be created. |
---|
194 | */ |
---|
195 | void addAnchorToModel(Model &model); |
---|
196 | |
---|
197 | /** |
---|
198 | * @brief Adds point marker to Model. |
---|
199 | * @details Marker of point is a small sphere (radius = 0.05). |
---|
200 | * @param[in] point Location of marker. |
---|
201 | * @param[in] model Owner of Part to be created, must contain at least one part. |
---|
202 | */ |
---|
203 | void addPointToModel(const Pt3D &point, Model &model); |
---|
204 | |
---|
205 | /** |
---|
206 | * @brief Adds axes markers to Model. |
---|
207 | * @details Axes markers are three streched (one of scales = 0.5, others = 0.05) and colored |
---|
208 | * cuboids. Cuboid visualising OX axis is red, OY - green, and OZ - blue. |
---|
209 | * @param[in] sizes Axes visual lengths. |
---|
210 | * @param[in] axes Axes orientation, relatively to global coordinate system axes. |
---|
211 | * @param[in] center Axes intersection point, relatively to global coordinate system origin. |
---|
212 | * @param[in] model Owner of Parts to be created, must contain at least one part. |
---|
213 | */ |
---|
214 | void addAxesToModel(const Pt3D &sizes, const Orient &axes, const Pt3D ¢er, Model &model); |
---|
215 | |
---|
216 | /** |
---|
217 | * @brief Merges two Models. |
---|
218 | * @details Moves all parts from source Model to target Model and - to provide Model |
---|
219 | * consistency - creates Joint between firsts Parts of each of them. Each model must contain |
---|
220 | * at least one Part. |
---|
221 | * @param[in] target Target Model, must contain at least one part. |
---|
222 | * @param[in] source Source Model, must contain at least one part. |
---|
223 | */ |
---|
224 | void mergeModels(Model &target, Model &source); |
---|
225 | |
---|
226 | /** |
---|
227 | * @brief Randomizes position, scale and rotations of Part. |
---|
228 | * @details Sets coords of Part position to random values from range (1.5, 2.5), scales to |
---|
229 | * random values from range (0.1, 1.0), and rotations around each axis to random values from |
---|
230 | * range (0, M_PI). |
---|
231 | * @param[in] part Part which position, scale and orient should be randomized. |
---|
232 | */ |
---|
233 | void randomizePositionScaleAndOrient(Part *part); |
---|
234 | } |
---|
235 | |
---|
236 | #endif |
---|