// This file is a part of the Framsticks GDK. // Copyright (C) 1999-2014 Maciej Komosinski and Szymon Ulatowski. See LICENSE.txt for details. // Refer to http://www.framsticks.com/ for further information. #include "geometryutils.h" #include double GeometryUtils::pointPosition(const int pointIndex, const int numberOfPoints) { return pointIndex / (numberOfPoints-1.0); } double GeometryUtils::pointOnAxis(const double scale, const double position) { return (position-0.5) * scale; } double GeometryUtils::pointOnAxis(const double scale, const int pointIndex, const int numberOfPoints) { return pointOnAxis(scale, pointPosition(pointIndex, numberOfPoints)); } double GeometryUtils::combination(const double value1, const double value2, const double position) { return value1 + position * (value2-value1); } double GeometryUtils::combination(const double value1, const double value2, const int pointIndex, const int numberOfPoints) { return combination(value1, value2, pointPosition(pointIndex, numberOfPoints)); } bool GeometryUtils::isPointInsideModelExcludingPart(const Pt3D &point, const Model *model, const int excludedPartIndex) { for (int i = 0; i < excludedPartIndex; i++) { if (isPointInsidePart(point, model->getPart(i))) { return true; } } for (int i = excludedPartIndex+1; i < model->getPartCount(); i++) { if (isPointStrictlyInsidePart(point, model->getPart(i))) { return true; } } return false; } bool GeometryUtils::isPointInsideModel(const Pt3D &point, const Model &model) { for (int i = 0; i < model.getPartCount(); i++) { if (isPointInsidePart(point, model.getPart(i))) { return true; } } return false; } bool GeometryUtils::isPointInsidePart(const Pt3D &point, const Part *part) { switch (part->shape) { case Part::SHAPE_ELLIPSOID: return isPointInsideEllipsoid(point, part); break; case Part::SHAPE_CUBOID: return isPointInsideCuboid(point, part); break; case Part::SHAPE_CYLINDER: return isPointInsideCylinder(point, part); break; } FMprintf("GeometryUtils", "isPointInsidePart", FMLV_ERROR, "Part shape=%d not supported", part->shape); return false; } bool GeometryUtils::isPointStrictlyInsidePart(const Pt3D &point, const Part *part) { switch (part->shape) { case Part::SHAPE_ELLIPSOID: return isPointStrictlyInsideEllipsoid(point, part); break; case Part::SHAPE_CUBOID: return isPointStrictlyInsideCuboid(point, part); break; case Part::SHAPE_CYLINDER: return isPointStrictlyInsideCylinder(point, part); break; } FMprintf("GeometryUtils", "isPointStrictlyInsidePart", FMLV_ERROR, "Part shape=%d not supported", part->shape); return false; } bool GeometryUtils::isPointInsideEllipsoid(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); double r = (pow(rotated.x, 2.0) / pow(part->scale.x, 2.0)) + (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); return r <= 1.0; } bool GeometryUtils::isPointStrictlyInsideEllipsoid(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); double r = (pow(rotated.x, 2.0) / pow(part->scale.x, 2.0)) + (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); return r < 1.0; } bool GeometryUtils::isPointInsideCuboid(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); return (fabs(rotated.x) <= part->scale.x) && (fabs(rotated.y) <= part->scale.y) && (fabs(rotated.z) <= part->scale.z); } bool GeometryUtils::isPointStrictlyInsideCuboid(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); return (fabs(rotated.x) < part->scale.x) && (fabs(rotated.y) < part->scale.y) && (fabs(rotated.z) < part->scale.z); } bool GeometryUtils::isPointInsideCylinder(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); double r = (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); return (fabs(rotated.x) <= part->scale.x) && (r <= 1.0); } bool GeometryUtils::isPointStrictlyInsideCylinder(const Pt3D &point, const Part *part) { Pt3D moved = point - part->p; Pt3D rotated; part->o.revTransform(rotated, moved); double r = (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); return (fabs(rotated.x) < part->scale.x) && (r < 1.0); } void GeometryUtils::findSizesAndAxesOfPointsGroup(SListTempl &points, Pt3D &sizes, Orient &axes) { findSizeAndAxisOfPointsGroup(points, sizes.x, axes.x); orthographicProjectionToPlane(points, axes.x); findSizeAndAxisOfPointsGroup(points, sizes.y, axes.y); orthographicProjectionToPlane(points, axes.y); Pt3D minimal(points.get(0)), maximal(points.get(0)); for (int i = 1; i < points.size(); i++) { minimal.getMin(points.get(i)); maximal.getMax(points.get(i)); } sizes.z = minimal.distanceTo(maximal); axes.z.vectorProduct(axes.x, axes.y); } void GeometryUtils::findSizeAndAxisOfPointsGroup(const SListTempl &points, double &size, Pt3D &axis) { int index1, index2; size = findTwoFurthestPoints(points, index1, index2); createAxisFromTwoPoints(axis, points.get(index1), points.get(index2)); } double GeometryUtils::findTwoFurthestPoints(const SListTempl &points, int &index1, int &index2) { double distance = 0; index1 = index2 = 0; for (int i = 0; i < points.size()-1; i++) { Pt3D p1 = points.get(i); for (int j = i+1; j < points.size(); j++) { Pt3D p2 = points.get(j); double d = p1.distanceTo(p2); if (d > distance) { distance = d; index1 = i; index2 = j; } } } return distance; } void GeometryUtils::createAxisFromTwoPoints(Pt3D &axis, const Pt3D &point1, const Pt3D &point2) { Pt3D vector = point2 - point1; vector.normalize(); axis.x = vector.x; axis.y = vector.y; axis.z = vector.z; } void GeometryUtils::orthographicProjectionToPlane(SListTempl &points, const Pt3D &planeNormalVector) { for (int i = 0; i < points.size(); i++) { Pt3D &point = points.get(i); double distance = pointDistanceToPlane(point, planeNormalVector); point.x -= planeNormalVector.x * distance; point.y -= planeNormalVector.y * distance; point.z -= planeNormalVector.z * distance; } } double GeometryUtils::pointDistanceToPlane(const Pt3D &point, const Pt3D &planeNormalVector) { return planeNormalVector.x*point.x + planeNormalVector.y*point.y + planeNormalVector.z*point.z; } void GeometryUtils::getRectangleApicesFromCuboid(const Part *part, const CuboidFaces::Face face, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4) { Pt3D temp1(part->scale), temp2(part->scale), temp3(part->scale), temp4(part->scale); if (CuboidFaces::isX(face)) { temp2.z *= -1; temp3.y *= -1; temp4.z *= -1; temp4.y *= -1; } else if (CuboidFaces::isY(face)) { temp2.x *= -1; temp3.z *= -1; temp4.x *= -1; temp4.z *= -1; } else if (CuboidFaces::isZ(face)) { temp2.y *= -1; temp3.x *= -1; temp4.y *= -1; temp4.x *= -1; } if (CuboidFaces::isNegative(face)) { temp1 *= -1; temp2 *= -1; temp3 *= -1; temp4 *= -1; } part->o.transform(apex1, temp1); part->o.transform(apex2, temp2); part->o.transform(apex3, temp3); part->o.transform(apex4, temp4); apex1 += part->p; apex2 += part->p; apex3 += part->p; apex4 += part->p; } void GeometryUtils::getRectangleApices(const double width, const double height, const Pt3D &position, const Orient &orient, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4) { Pt3D temp1(0.0, +width, +height); Pt3D temp2(0.0, +width, -height); Pt3D temp3(0.0, -width, +height); Pt3D temp4(0.0, -width, -height); orient.transform(apex1, temp1); orient.transform(apex2, temp2); orient.transform(apex3, temp3); orient.transform(apex4, temp4); apex1 += position; apex2 += position; apex3 += position; apex4 += position; } void GeometryUtils::getNextEllipseSegmentationPoint(const double d, const double a, const double b, double &x, double &y) { x += d / sqrt(1.0 + (b*b * x*x) / (a*a * (a*a - x*x))); y = b * sqrt(1.0 - (x*x) / (a*a)); } double GeometryUtils::ellipsoidArea(const Pt3D &sizes) { return ellipsoidArea(sizes.x, sizes.y, sizes.z); } double GeometryUtils::ellipsoidArea(const double a, const double b, const double c) { double p = 1.6075; double ap = pow(a, p); double bp = pow(b, p); double cp = pow(c, p); return 4*M_PI * pow((ap*bp + bp*cp + cp*ap) / 3.0, 1.0 / p); } double GeometryUtils::ellipsePerimeter(const double a, const double b) { return M_PI * ((3 * (a+b)) - sqrt((3*a + b) * (a + 3*b))); }