1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
2 | // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. |
---|
3 | // See LICENSE.txt for details. |
---|
4 | |
---|
5 | #include "geometryutils.h" |
---|
6 | |
---|
7 | #include <math.h> |
---|
8 | |
---|
9 | double GeometryUtils::pointPosition(const int pointIndex, const int numberOfPoints) |
---|
10 | { |
---|
11 | if (numberOfPoints == 1) |
---|
12 | return 0; |
---|
13 | else |
---|
14 | return pointIndex / (numberOfPoints-1.0); |
---|
15 | } |
---|
16 | |
---|
17 | double GeometryUtils::pointOnAxis(const double scale, const double position) |
---|
18 | { |
---|
19 | return (position-0.5) * scale; |
---|
20 | } |
---|
21 | |
---|
22 | double GeometryUtils::pointOnAxis(const double scale, const int pointIndex, const int numberOfPoints) |
---|
23 | { |
---|
24 | return pointOnAxis(scale, pointPosition(pointIndex, numberOfPoints)); |
---|
25 | } |
---|
26 | |
---|
27 | double GeometryUtils::combination(const double value1, const double value2, const double position) |
---|
28 | { |
---|
29 | return value1 + position * (value2-value1); |
---|
30 | } |
---|
31 | |
---|
32 | double GeometryUtils::combination(const double value1, const double value2, const int pointIndex, const int numberOfPoints) |
---|
33 | { |
---|
34 | return combination(value1, value2, pointPosition(pointIndex, numberOfPoints)); |
---|
35 | } |
---|
36 | |
---|
37 | bool GeometryUtils::isPointInsideModelExcludingPart(const Pt3D &point, const Model *model, const int excludedPartIndex) |
---|
38 | { |
---|
39 | for (int i = 0; i < excludedPartIndex; i++) |
---|
40 | { |
---|
41 | if (isPointInsidePart(point, model->getPart(i))) |
---|
42 | { |
---|
43 | return true; |
---|
44 | } |
---|
45 | } |
---|
46 | |
---|
47 | for (int i = excludedPartIndex+1; i < model->getPartCount(); i++) |
---|
48 | { |
---|
49 | if (isPointStrictlyInsidePart(point, model->getPart(i))) |
---|
50 | { |
---|
51 | return true; |
---|
52 | } |
---|
53 | } |
---|
54 | |
---|
55 | return false; |
---|
56 | } |
---|
57 | |
---|
58 | bool GeometryUtils::isPointInsideModel(const Pt3D &point, const Model &model) |
---|
59 | { |
---|
60 | for (int i = 0; i < model.getPartCount(); i++) |
---|
61 | { |
---|
62 | if (isPointInsidePart(point, model.getPart(i))) |
---|
63 | { |
---|
64 | return true; |
---|
65 | } |
---|
66 | } |
---|
67 | |
---|
68 | return false; |
---|
69 | } |
---|
70 | |
---|
71 | bool GeometryUtils::isPointInsidePart(const Pt3D &point, const Part *part) |
---|
72 | { |
---|
73 | switch (part->shape) |
---|
74 | { |
---|
75 | case Part::SHAPE_ELLIPSOID: |
---|
76 | return isPointInsideEllipsoid(point, part); |
---|
77 | break; |
---|
78 | |
---|
79 | case Part::SHAPE_CUBOID: |
---|
80 | return isPointInsideCuboid(point, part); |
---|
81 | break; |
---|
82 | |
---|
83 | case Part::SHAPE_CYLINDER: |
---|
84 | return isPointInsideCylinder(point, part); |
---|
85 | break; |
---|
86 | } |
---|
87 | logPrintf("GeometryUtils", "isPointInsidePart", LOG_ERROR, "Part shape=%d not supported", part->shape); |
---|
88 | return false; |
---|
89 | } |
---|
90 | |
---|
91 | bool GeometryUtils::isPointStrictlyInsidePart(const Pt3D &point, const Part *part) |
---|
92 | { |
---|
93 | switch (part->shape) |
---|
94 | { |
---|
95 | case Part::SHAPE_ELLIPSOID: |
---|
96 | return isPointStrictlyInsideEllipsoid(point, part); |
---|
97 | break; |
---|
98 | |
---|
99 | case Part::SHAPE_CUBOID: |
---|
100 | return isPointStrictlyInsideCuboid(point, part); |
---|
101 | break; |
---|
102 | |
---|
103 | case Part::SHAPE_CYLINDER: |
---|
104 | return isPointStrictlyInsideCylinder(point, part); |
---|
105 | break; |
---|
106 | } |
---|
107 | logPrintf("GeometryUtils", "isPointStrictlyInsidePart", LOG_ERROR, "Part shape=%d not supported", part->shape); |
---|
108 | return false; |
---|
109 | } |
---|
110 | |
---|
111 | bool GeometryUtils::isPointInsideEllipsoid(const Pt3D &point, const Part *part) |
---|
112 | { |
---|
113 | Pt3D moved = point - part->p; |
---|
114 | Pt3D rotated; |
---|
115 | part->o.revTransform(rotated, moved); |
---|
116 | |
---|
117 | double r |
---|
118 | = (pow(rotated.x, 2.0) / pow(part->scale.x, 2.0)) |
---|
119 | + (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) |
---|
120 | + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); |
---|
121 | |
---|
122 | return r <= 1.0; |
---|
123 | } |
---|
124 | |
---|
125 | bool GeometryUtils::isPointStrictlyInsideEllipsoid(const Pt3D &point, const Part *part) |
---|
126 | { |
---|
127 | Pt3D moved = point - part->p; |
---|
128 | Pt3D rotated; |
---|
129 | part->o.revTransform(rotated, moved); |
---|
130 | |
---|
131 | double r |
---|
132 | = (pow(rotated.x, 2.0) / pow(part->scale.x, 2.0)) |
---|
133 | + (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) |
---|
134 | + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); |
---|
135 | |
---|
136 | return r < 1.0; |
---|
137 | } |
---|
138 | |
---|
139 | bool GeometryUtils::isPointInsideCuboid(const Pt3D &point, const Part *part) |
---|
140 | { |
---|
141 | Pt3D moved = point - part->p; |
---|
142 | Pt3D rotated; |
---|
143 | part->o.revTransform(rotated, moved); |
---|
144 | |
---|
145 | return (fabs(rotated.x) <= part->scale.x) |
---|
146 | && (fabs(rotated.y) <= part->scale.y) |
---|
147 | && (fabs(rotated.z) <= part->scale.z); |
---|
148 | } |
---|
149 | |
---|
150 | bool GeometryUtils::isPointStrictlyInsideCuboid(const Pt3D &point, const Part *part) |
---|
151 | { |
---|
152 | Pt3D moved = point - part->p; |
---|
153 | Pt3D rotated; |
---|
154 | part->o.revTransform(rotated, moved); |
---|
155 | |
---|
156 | return (fabs(rotated.x) < part->scale.x) |
---|
157 | && (fabs(rotated.y) < part->scale.y) |
---|
158 | && (fabs(rotated.z) < part->scale.z); |
---|
159 | } |
---|
160 | |
---|
161 | bool GeometryUtils::isPointInsideCylinder(const Pt3D &point, const Part *part) |
---|
162 | { |
---|
163 | Pt3D moved = point - part->p; |
---|
164 | Pt3D rotated; |
---|
165 | part->o.revTransform(rotated, moved); |
---|
166 | |
---|
167 | double r |
---|
168 | = (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) |
---|
169 | + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); |
---|
170 | |
---|
171 | return (fabs(rotated.x) <= part->scale.x) && (r <= 1.0); |
---|
172 | } |
---|
173 | |
---|
174 | bool GeometryUtils::isPointStrictlyInsideCylinder(const Pt3D &point, const Part *part) |
---|
175 | { |
---|
176 | Pt3D moved = point - part->p; |
---|
177 | Pt3D rotated; |
---|
178 | part->o.revTransform(rotated, moved); |
---|
179 | |
---|
180 | double r |
---|
181 | = (pow(rotated.y, 2.0) / pow(part->scale.y, 2.0)) |
---|
182 | + (pow(rotated.z, 2.0) / pow(part->scale.z, 2.0)); |
---|
183 | |
---|
184 | return (fabs(rotated.x) < part->scale.x) && (r < 1.0); |
---|
185 | } |
---|
186 | |
---|
187 | void GeometryUtils::findSizesAndAxesOfPointsGroup(SListTempl<Pt3D> &points, Pt3D &sizes, |
---|
188 | Orient &axes) |
---|
189 | { |
---|
190 | findSizeAndAxisOfPointsGroup(points, sizes.x, axes.x); |
---|
191 | orthographicProjectionToPlane(points, axes.x); |
---|
192 | findSizeAndAxisOfPointsGroup(points, sizes.y, axes.y); |
---|
193 | orthographicProjectionToPlane(points, axes.y); |
---|
194 | |
---|
195 | Pt3D minimal(points.get(0)), maximal(points.get(0)); |
---|
196 | |
---|
197 | for (int i = 1; i < points.size(); i++) |
---|
198 | { |
---|
199 | minimal.getMin(points.get(i)); |
---|
200 | maximal.getMax(points.get(i)); |
---|
201 | } |
---|
202 | |
---|
203 | sizes.z = minimal.distanceTo(maximal); |
---|
204 | axes.z.vectorProduct(axes.x, axes.y); |
---|
205 | } |
---|
206 | |
---|
207 | void GeometryUtils::findSizeAndAxisOfPointsGroup(const SListTempl<Pt3D> &points, double &size, |
---|
208 | Pt3D &axis) |
---|
209 | { |
---|
210 | int index1, index2; |
---|
211 | size = findTwoFurthestPoints(points, index1, index2); |
---|
212 | createAxisFromTwoPoints(axis, points.get(index1), points.get(index2)); |
---|
213 | } |
---|
214 | |
---|
215 | double GeometryUtils::findTwoFurthestPoints(const SListTempl<Pt3D> &points, int &index1, |
---|
216 | int &index2) |
---|
217 | { |
---|
218 | double distance = 0; |
---|
219 | index1 = index2 = 0; |
---|
220 | |
---|
221 | for (int i = 0; i < points.size()-1; i++) |
---|
222 | { |
---|
223 | Pt3D p1 = points.get(i); |
---|
224 | |
---|
225 | for (int j = i+1; j < points.size(); j++) |
---|
226 | { |
---|
227 | Pt3D p2 = points.get(j); |
---|
228 | double d = p1.distanceTo(p2); |
---|
229 | |
---|
230 | if (d > distance) |
---|
231 | { |
---|
232 | distance = d; |
---|
233 | index1 = i; |
---|
234 | index2 = j; |
---|
235 | } |
---|
236 | } |
---|
237 | } |
---|
238 | |
---|
239 | return distance; |
---|
240 | } |
---|
241 | |
---|
242 | void GeometryUtils::createAxisFromTwoPoints(Pt3D &axis, const Pt3D &point1, const Pt3D &point2) |
---|
243 | { |
---|
244 | Pt3D vector = point2 - point1; |
---|
245 | vector.normalize(); |
---|
246 | |
---|
247 | axis.x = vector.x; |
---|
248 | axis.y = vector.y; |
---|
249 | axis.z = vector.z; |
---|
250 | } |
---|
251 | |
---|
252 | void GeometryUtils::orthographicProjectionToPlane(SListTempl<Pt3D> &points, |
---|
253 | const Pt3D &planeNormalVector) |
---|
254 | { |
---|
255 | for (int i = 0; i < points.size(); i++) |
---|
256 | { |
---|
257 | Pt3D &point = points.get(i); |
---|
258 | |
---|
259 | double distance = pointDistanceToPlane(point, planeNormalVector); |
---|
260 | |
---|
261 | point.x -= planeNormalVector.x * distance; |
---|
262 | point.y -= planeNormalVector.y * distance; |
---|
263 | point.z -= planeNormalVector.z * distance; |
---|
264 | } |
---|
265 | } |
---|
266 | |
---|
267 | double GeometryUtils::pointDistanceToPlane(const Pt3D &point, const Pt3D &planeNormalVector) |
---|
268 | { |
---|
269 | return planeNormalVector.x*point.x + planeNormalVector.y*point.y + planeNormalVector.z*point.z; |
---|
270 | } |
---|
271 | |
---|
272 | void GeometryUtils::getRectangleApicesFromCuboid(const Part *part, const CuboidFaces::Face face, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4) |
---|
273 | { |
---|
274 | Pt3D temp1(part->scale), temp2(part->scale), temp3(part->scale), temp4(part->scale); |
---|
275 | |
---|
276 | if (CuboidFaces::isX(face)) |
---|
277 | { |
---|
278 | temp2.z *= -1; |
---|
279 | temp3.y *= -1; |
---|
280 | temp4.z *= -1; |
---|
281 | temp4.y *= -1; |
---|
282 | } |
---|
283 | else if (CuboidFaces::isY(face)) |
---|
284 | { |
---|
285 | temp2.x *= -1; |
---|
286 | temp3.z *= -1; |
---|
287 | temp4.x *= -1; |
---|
288 | temp4.z *= -1; |
---|
289 | } |
---|
290 | else if (CuboidFaces::isZ(face)) |
---|
291 | { |
---|
292 | temp2.y *= -1; |
---|
293 | temp3.x *= -1; |
---|
294 | temp4.y *= -1; |
---|
295 | temp4.x *= -1; |
---|
296 | } |
---|
297 | |
---|
298 | if (CuboidFaces::isNegative(face)) |
---|
299 | { |
---|
300 | temp1 *= -1; |
---|
301 | temp2 *= -1; |
---|
302 | temp3 *= -1; |
---|
303 | temp4 *= -1; |
---|
304 | } |
---|
305 | |
---|
306 | part->o.transform(apex1, temp1); |
---|
307 | part->o.transform(apex2, temp2); |
---|
308 | part->o.transform(apex3, temp3); |
---|
309 | part->o.transform(apex4, temp4); |
---|
310 | |
---|
311 | apex1 += part->p; |
---|
312 | apex2 += part->p; |
---|
313 | apex3 += part->p; |
---|
314 | apex4 += part->p; |
---|
315 | } |
---|
316 | |
---|
317 | void GeometryUtils::getRectangleApices(const double width, const double height, const Pt3D &position, const Orient &orient, Pt3D &apex1, Pt3D &apex2, Pt3D &apex3, Pt3D &apex4) |
---|
318 | { |
---|
319 | Pt3D temp1(0.0, +width, +height); |
---|
320 | Pt3D temp2(0.0, +width, -height); |
---|
321 | Pt3D temp3(0.0, -width, +height); |
---|
322 | Pt3D temp4(0.0, -width, -height); |
---|
323 | |
---|
324 | orient.transform(apex1, temp1); |
---|
325 | orient.transform(apex2, temp2); |
---|
326 | orient.transform(apex3, temp3); |
---|
327 | orient.transform(apex4, temp4); |
---|
328 | |
---|
329 | apex1 += position; |
---|
330 | apex2 += position; |
---|
331 | apex3 += position; |
---|
332 | apex4 += position; |
---|
333 | } |
---|
334 | |
---|
335 | void GeometryUtils::getNextEllipseSegmentationPoint(const double d, const double a, const double b, double &x, double &y) |
---|
336 | { |
---|
337 | x += d / sqrt(1.0 + (b*b * x*x) / (a*a * (a*a - x*x))); |
---|
338 | double sqrt_arg = 1.0 - (x*x) / (a*a); |
---|
339 | if (sqrt_arg >= 0) |
---|
340 | y = b * sqrt(sqrt_arg); |
---|
341 | else |
---|
342 | y = std::numeric_limits<double>::signaling_NaN(); |
---|
343 | //This function is called from MeshBuilder::EllipsoidSurface::findNextAreaEdgeAndPhase(). |
---|
344 | //y=NaN set above co-occurs with the value of x that doesn't meet the condition tested in findNextAreaEdgeAndPhase(). |
---|
345 | //If the condition is true (i.e., x exceeds the allowed range), entirely new values of x and y are set in the next step anyway. |
---|
346 | //An impossible-to-calculate y should never be used for invalid x, hence y=NaN is set here to indicate this specific situation and signal just in case anyone would try to use such y. |
---|
347 | } |
---|
348 | |
---|
349 | double GeometryUtils::ellipsoidArea(const Pt3D &sizes) |
---|
350 | { |
---|
351 | return ellipsoidArea(sizes.x, sizes.y, sizes.z); |
---|
352 | } |
---|
353 | |
---|
354 | double GeometryUtils::ellipsoidArea(const double a, const double b, const double c) |
---|
355 | { |
---|
356 | double p = 1.6075; |
---|
357 | double ap = pow(a, p); |
---|
358 | double bp = pow(b, p); |
---|
359 | double cp = pow(c, p); |
---|
360 | return 4*M_PI * pow((ap*bp + bp*cp + cp*ap) / 3.0, 1.0 / p); |
---|
361 | } |
---|
362 | |
---|
363 | double GeometryUtils::ellipsePerimeter(const double a, const double b) |
---|
364 | { |
---|
365 | return M_PI * ((3 * (a+b)) - sqrt((3*a + b) * (a + 3*b))); |
---|
366 | } |
---|