1 | // This file is a part of the Framsticks GDK. |
---|
2 | // Copyright (C) 2002-2014 Maciej Komosinski and Szymon Ulatowski. See LICENSE.txt for details. |
---|
3 | // Refer to http://www.framsticks.com/ for further information. |
---|
4 | |
---|
5 | #include <ctype.h> //isupper() |
---|
6 | #include "oper_fx.h" |
---|
7 | #include <common/framsg.h> |
---|
8 | #include <common/nonstd_math.h> |
---|
9 | #include <frams/util/rndutil.h> |
---|
10 | |
---|
11 | static double distrib_force[]= // for '!' |
---|
12 | { |
---|
13 | 3, // distribution 0 -__/ +1 |
---|
14 | 0.001, 0.2, // "slow" neurons |
---|
15 | 0.001, 1, |
---|
16 | 1, 1, // "fast" neurons |
---|
17 | }; |
---|
18 | static double distrib_inertia[]= // for '=' |
---|
19 | { |
---|
20 | 2, // distribution 0 |..- +1 |
---|
21 | 0, 0, // "fast" neurons |
---|
22 | 0.7, 0.98, |
---|
23 | }; |
---|
24 | static double distrib_sigmo[]= // for '/' |
---|
25 | { |
---|
26 | 5, // distribution -999 -..-^-..- +999 |
---|
27 | -999, -999, //"perceptron" |
---|
28 | 999, 999, |
---|
29 | -5, -1, // nonlinear |
---|
30 | 1, 5, |
---|
31 | -1, 1, // ~linear |
---|
32 | }; |
---|
33 | |
---|
34 | |
---|
35 | int GenoOperators::roulette(const double *probtab,const int count) |
---|
36 | { |
---|
37 | double sum=0; |
---|
38 | int i; |
---|
39 | for (i=0;i<count;i++) sum+=probtab[i]; |
---|
40 | double sel=rnd01*sum; |
---|
41 | for (sum=0,i=0;i<count;i++) {sum+=probtab[i]; if (sel<sum) return i;} |
---|
42 | return -1; |
---|
43 | } |
---|
44 | |
---|
45 | bool GenoOperators::getMinMaxDef(ParamInterface *p,int i,double &mn,double &mx,double &def) |
---|
46 | { |
---|
47 | mn=mx=def=0; |
---|
48 | int defined=0; |
---|
49 | if (p->type(i)[0]=='f') |
---|
50 | { |
---|
51 | double _mn=0,_mx=1,_def=0.5; |
---|
52 | defined=p->getMinMax(i,_mn,_mx,_def); |
---|
53 | if (defined==1) _mx=_mn+1.0; |
---|
54 | if (_mx<_mn && defined==3) _mn=_mx=_def; //only default was defined, let's assume min=max=default |
---|
55 | if (defined<3) _def=(_mn+_mx)/2.0; |
---|
56 | mn=_mn; mx=_mx; def=_def; |
---|
57 | } |
---|
58 | if (p->type(i)[0]=='d') |
---|
59 | { |
---|
60 | long _mn=0,_mx=1,_def=0; |
---|
61 | defined=p->getMinMax(i,_mn,_mx,_def); |
---|
62 | if (defined==1) _mx=_mn+1; |
---|
63 | if (_mx<_mn && defined==3) _mn=_mx=_def; //only default was defined, let's assume min=max=default |
---|
64 | if (defined<3) _def=(_mn+_mx)/2; |
---|
65 | mn=_mn; mx=_mx; def=_def; |
---|
66 | } |
---|
67 | return defined==3; |
---|
68 | } |
---|
69 | |
---|
70 | int GenoOperators::selectRandomProperty(Neuro* n) |
---|
71 | { |
---|
72 | int neuext=n->extraProperties().getPropCount(), |
---|
73 | neucls=n->getClass()==NULL?0:n->getClass()->getProperties().getPropCount(); |
---|
74 | if (neuext+neucls==0) return -1; //no properties in this neuron |
---|
75 | int index=randomN(neuext+neucls); |
---|
76 | if (index>=neuext) index=index-neuext+100; |
---|
77 | return index; |
---|
78 | } |
---|
79 | |
---|
80 | double GenoOperators::mutateNeuProperty(double current,Neuro *n,int i) |
---|
81 | { |
---|
82 | if (i==-1) return mutateCreepNoLimit('f',current,-10,10); //i==-1: mutating weight of neural connection |
---|
83 | Param p; |
---|
84 | if (i>=100) {i-=100; p=n->getClass()->getProperties();} |
---|
85 | else p=n->extraProperties(); |
---|
86 | double newval=current; |
---|
87 | /*bool ok=*/getMutatedProperty(p,i,current,newval); |
---|
88 | return newval; |
---|
89 | } |
---|
90 | |
---|
91 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p,int i) |
---|
92 | { |
---|
93 | double mn,mx,df; |
---|
94 | if (p.type(i)[0]!='f' && p.type(i)[0]!='d') return false; //don't know how to mutate |
---|
95 | getMinMaxDef(&p,i,mn,mx,df); |
---|
96 | |
---|
97 | ExtValue ev; |
---|
98 | p.get(i,ev); |
---|
99 | ev.setDouble(mutateCreep(p.type(i)[0],ev.getDouble(),mn,mx)); |
---|
100 | p.set(i,ev); |
---|
101 | return true; |
---|
102 | } |
---|
103 | |
---|
104 | bool GenoOperators::mutateProperty(ParamInterface &p,int i) |
---|
105 | { |
---|
106 | double newval; |
---|
107 | ExtValue ev; |
---|
108 | p.get(i,ev); |
---|
109 | bool ok=getMutatedProperty(p,i,ev.getDouble(),newval); |
---|
110 | if (ok) {ev.setDouble(newval); p.set(i,ev);} |
---|
111 | return ok; |
---|
112 | } |
---|
113 | |
---|
114 | bool GenoOperators::getMutatedProperty(ParamInterface &p,int i,double oldval,double &newval) |
---|
115 | { |
---|
116 | newval=0; |
---|
117 | if (p.type(i)[0]!='f' && p.type(i)[0]!='d') return false; //don't know how to mutate |
---|
118 | const char *n=p.id(i),*na=p.name(i); |
---|
119 | if (strcmp(n,"si")==0 && strcmp(na,"Sigmoid")==0) newval=CustomRnd(distrib_sigmo); else |
---|
120 | if (strcmp(n,"in")==0 && strcmp(na,"Inertia")==0) newval=CustomRnd(distrib_inertia); else |
---|
121 | if (strcmp(n,"fo")==0 && strcmp(na,"Force")==0) newval=CustomRnd(distrib_force); else |
---|
122 | { |
---|
123 | double mn,mx,df; |
---|
124 | getMinMaxDef(&p,i,mn,mx,df); |
---|
125 | newval=mutateCreep(p.type(i)[0],oldval,mn,mx); |
---|
126 | } |
---|
127 | return true; |
---|
128 | } |
---|
129 | |
---|
130 | double GenoOperators::mutateCreepNoLimit(char type,double current,double mn,double mx) |
---|
131 | { |
---|
132 | double result=RndGen.Gauss(current,(mx-mn)/2/5); // /halfinterval, 5 times narrower |
---|
133 | if (type=='d') {result=int(result+0.5); if (result==current) result+=randomN(2)*2-1;} |
---|
134 | else result=floor(result*1000+0.5)/1000.0; //round |
---|
135 | return result; |
---|
136 | } |
---|
137 | |
---|
138 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx) |
---|
139 | { |
---|
140 | double result = mutateCreepNoLimit(type, current, mn, mx); //TODO consider that when boundary is touched (reflect/absorb below), the default precision (3 digits) may change. Is it good or bad? |
---|
141 | //reflect: |
---|
142 | if (result > mx) result = mx - (result - mx); else |
---|
143 | if (result<mn) result = mn + (mn - result); |
---|
144 | //absorb (just in case 'result' exceeded the allowed range so much): |
---|
145 | if (result>mx) result = mx; else |
---|
146 | if (result < mn) result = mn; |
---|
147 | return result; |
---|
148 | } |
---|
149 | |
---|
150 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
151 | { |
---|
152 | p.setInt(index, value); //TODO value=2.5 will result in 2 but we want it to be 2 or 3 with equal probability. value=2.1 would be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
153 | } |
---|
154 | |
---|
155 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
156 | { |
---|
157 | if (p1.type(i1)[0] == 'f' && p2.type(i2)[0] == 'f') |
---|
158 | { |
---|
159 | double v1 = p1.getDouble(i1); |
---|
160 | double v2 = p2.getDouble(i2); |
---|
161 | p1.setDouble(i1, v1*proportion + v2*(1 - proportion)); |
---|
162 | p2.setDouble(i2, v2*proportion + v1*(1 - proportion)); |
---|
163 | } |
---|
164 | if (p1.type(i1)[0] == 'd' && p2.type(i2)[0] == 'd') |
---|
165 | { |
---|
166 | int v1 = p1.getInt(i1); |
---|
167 | int v2 = p2.getInt(i2); |
---|
168 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1*proportion + v2*(1 - proportion)); |
---|
169 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2*proportion + v1*(1 - proportion)); |
---|
170 | } |
---|
171 | } |
---|
172 | |
---|
173 | |
---|
174 | NeuroClass* GenoOperators::getRandomNeuroClass() |
---|
175 | { |
---|
176 | SListTempl<NeuroClass*> active; |
---|
177 | for(int i=0;i<Neuro::getClassCount();i++) |
---|
178 | if (Neuro::getClass(i)->genactive) active+=Neuro::getClass(i); |
---|
179 | if (!active==0) return NULL; else return active(randomN(!active)); |
---|
180 | } |
---|
181 | |
---|
182 | NeuroClass* GenoOperators::parseNeuroClass(char*& s) |
---|
183 | { |
---|
184 | int len=strlen(s); |
---|
185 | int Len=0; |
---|
186 | NeuroClass *I=NULL; |
---|
187 | for(int i=0;i<Neuro::getClassCount();i++) |
---|
188 | { |
---|
189 | const char *n=Neuro::getClass(i)->name; |
---|
190 | int l=strlen(n); |
---|
191 | if (len>=l && l>Len && (strncmp(s,n,l)==0)) {I=Neuro::getClass(i); Len=l;} |
---|
192 | } |
---|
193 | s+=Len; |
---|
194 | return I; |
---|
195 | } |
---|
196 | |
---|
197 | Neuro* GenoOperators::findNeuro(const Model *m,const NeuroClass *nc) |
---|
198 | { |
---|
199 | if (!m) return NULL; |
---|
200 | for(int i=0;i<m->getNeuroCount();i++) |
---|
201 | if (m->getNeuro(i)->getClass()==nc) return m->getNeuro(i); |
---|
202 | return NULL; //neuron of class 'nc' was not found |
---|
203 | } |
---|
204 | |
---|
205 | int GenoOperators::neuroClassProp(char*& s,NeuroClass *nc,bool also_v1_N_props) |
---|
206 | { |
---|
207 | int len=strlen(s); |
---|
208 | int Len=0,I=-1; |
---|
209 | if (nc) |
---|
210 | { |
---|
211 | Param p=nc->getProperties(); |
---|
212 | for(int i=0;i<p.getPropCount();i++) |
---|
213 | { |
---|
214 | const char *n=p.id(i); |
---|
215 | int l=strlen(n); |
---|
216 | if (len>=l && l>Len && (strncmp(s,n,l)==0)) {I=100+i; Len=l;} |
---|
217 | if (also_v1_N_props) //recognize old properties symbols /=! |
---|
218 | { |
---|
219 | if (strcmp(n,"si")==0) n="/"; else |
---|
220 | if (strcmp(n,"in")==0) n="="; else |
---|
221 | if (strcmp(n,"fo")==0) n="!"; |
---|
222 | l=strlen(n); |
---|
223 | if (len>=l && l>Len && (strncmp(s,n,l)==0)) {I=100+i; Len=l;} |
---|
224 | } |
---|
225 | } |
---|
226 | } |
---|
227 | Neuro n; |
---|
228 | Param p=n.extraProperties(); |
---|
229 | for(int i=0;i<p.getPropCount();i++) |
---|
230 | { |
---|
231 | const char *n=p.id(i); |
---|
232 | int l=strlen(n); |
---|
233 | if (len>=l && l>Len && (strncmp(s,n,l)==0)) {I=i; Len=l;} |
---|
234 | } |
---|
235 | s+=Len; |
---|
236 | return I; |
---|
237 | } |
---|
238 | |
---|
239 | bool GenoOperators::isWS(const char c) |
---|
240 | {return c==' ' || c=='\n' || c=='\t' || c=='\r';} |
---|
241 | |
---|
242 | void GenoOperators::skipWS(char *&s) |
---|
243 | { if (!s) FramMessage("GenoOperators","skipWS","NULL reference!",1); else |
---|
244 | while (isWS(*s)) s++; |
---|
245 | } |
---|
246 | |
---|
247 | bool GenoOperators::areAlike(char *g1,char *g2) |
---|
248 | { |
---|
249 | while (*g1 || *g2) |
---|
250 | { |
---|
251 | skipWS(g1); |
---|
252 | skipWS(g2); |
---|
253 | if (*g1 != *g2) return false; //when difference |
---|
254 | if (!*g1 && !*g2) break; //both end |
---|
255 | g1++; |
---|
256 | g2++; |
---|
257 | } |
---|
258 | return true; //equal |
---|
259 | } |
---|
260 | |
---|
261 | char* GenoOperators::strchrn0(const char *str,char ch) |
---|
262 | { return ch==0?NULL:strchr((char*)str,ch); } |
---|
263 | |
---|
264 | bool GenoOperators::isNeuroClassName(const char firstchar) |
---|
265 | { |
---|
266 | return isupper(firstchar) || firstchar=='|' || firstchar=='@' || firstchar=='*'; |
---|
267 | } |
---|
268 | |
---|