[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[749] | 2 | // Copyright (C) 1999-2018 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include <ctype.h> //isupper() |
---|
[121] | 6 | #include "oper_fx.h" |
---|
[375] | 7 | #include <common/log.h> |
---|
[109] | 8 | #include <common/nonstd_math.h> |
---|
| 9 | #include <frams/util/rndutil.h> |
---|
| 10 | |
---|
[168] | 11 | static double distrib_force[] = // for '!' |
---|
[109] | 12 | { |
---|
[168] | 13 | 3, // distribution 0 -__/ +1 |
---|
| 14 | 0.001, 0.2, // "slow" neurons |
---|
| 15 | 0.001, 1, |
---|
| 16 | 1, 1, // "fast" neurons |
---|
[109] | 17 | }; |
---|
[168] | 18 | static double distrib_inertia[] = // for '=' |
---|
[109] | 19 | { |
---|
[168] | 20 | 2, // distribution 0 |..- +1 |
---|
| 21 | 0, 0, // "fast" neurons |
---|
| 22 | 0.7, 0.98, |
---|
[109] | 23 | }; |
---|
[168] | 24 | static double distrib_sigmo[] = // for '/' |
---|
[109] | 25 | { |
---|
[168] | 26 | 5, // distribution -999 -..-^-..- +999 |
---|
| 27 | -999, -999, //"perceptron" |
---|
| 28 | 999, 999, |
---|
| 29 | -5, -1, // nonlinear |
---|
| 30 | 1, 5, |
---|
| 31 | -1, 1, // ~linear |
---|
[109] | 32 | }; |
---|
| 33 | |
---|
| 34 | |
---|
[168] | 35 | int GenoOperators::roulette(const double *probtab, const int count) |
---|
[109] | 36 | { |
---|
[168] | 37 | double sum = 0; |
---|
| 38 | int i; |
---|
| 39 | for (i = 0; i < count; i++) sum += probtab[i]; |
---|
| 40 | double sel = rnd01*sum; |
---|
| 41 | for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } |
---|
| 42 | return -1; |
---|
[109] | 43 | } |
---|
| 44 | |
---|
[168] | 45 | bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) |
---|
[109] | 46 | { |
---|
[168] | 47 | mn = mx = def = 0; |
---|
| 48 | int defined = 0; |
---|
| 49 | if (p->type(i)[0] == 'f') |
---|
| 50 | { |
---|
| 51 | double _mn = 0, _mx = 1, _def = 0.5; |
---|
[743] | 52 | defined = p->getMinMaxDouble(i, _mn, _mx, _def); |
---|
[168] | 53 | if (defined == 1) _mx = _mn + 1.0; |
---|
| 54 | if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default |
---|
| 55 | if (defined < 3) _def = (_mn + _mx) / 2.0; |
---|
| 56 | mn = _mn; mx = _mx; def = _def; |
---|
| 57 | } |
---|
| 58 | if (p->type(i)[0] == 'd') |
---|
| 59 | { |
---|
[247] | 60 | paInt _mn = 0, _mx = 1, _def = 0; |
---|
[743] | 61 | defined = p->getMinMaxInt(i, _mn, _mx, _def); |
---|
[168] | 62 | if (defined == 1) _mx = _mn + 1; |
---|
| 63 | if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default |
---|
| 64 | if (defined < 3) _def = (_mn + _mx) / 2; |
---|
| 65 | mn = _mn; mx = _mx; def = _def; |
---|
| 66 | } |
---|
| 67 | return defined == 3; |
---|
[109] | 68 | } |
---|
| 69 | |
---|
[121] | 70 | int GenoOperators::selectRandomProperty(Neuro* n) |
---|
[109] | 71 | { |
---|
[168] | 72 | int neuext = n->extraProperties().getPropCount(), |
---|
| 73 | neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); |
---|
| 74 | if (neuext + neucls == 0) return -1; //no properties in this neuron |
---|
| 75 | int index = randomN(neuext + neucls); |
---|
| 76 | if (index >= neuext) index = index - neuext + 100; |
---|
| 77 | return index; |
---|
[109] | 78 | } |
---|
| 79 | |
---|
[168] | 80 | double GenoOperators::mutateNeuProperty(double current, Neuro *n, int i) |
---|
[109] | 81 | { |
---|
[751] | 82 | if (i == -1) return mutateCreepNoLimit('f', current, 2, true); //i==-1: mutating weight of neural connection |
---|
[168] | 83 | Param p; |
---|
| 84 | if (i >= 100) { i -= 100; p = n->getClass()->getProperties(); } |
---|
| 85 | else p = n->extraProperties(); |
---|
| 86 | double newval = current; |
---|
| 87 | /*bool ok=*/getMutatedProperty(p, i, current, newval); |
---|
| 88 | return newval; |
---|
[109] | 89 | } |
---|
| 90 | |
---|
[168] | 91 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) |
---|
[109] | 92 | { |
---|
[168] | 93 | double mn, mx, df; |
---|
| 94 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 95 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[109] | 96 | |
---|
[168] | 97 | ExtValue ev; |
---|
| 98 | p.get(i, ev); |
---|
[751] | 99 | ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true)); |
---|
[168] | 100 | p.set(i, ev); |
---|
| 101 | return true; |
---|
[109] | 102 | } |
---|
| 103 | |
---|
[168] | 104 | bool GenoOperators::mutateProperty(ParamInterface &p, int i) |
---|
[109] | 105 | { |
---|
[168] | 106 | double newval; |
---|
| 107 | ExtValue ev; |
---|
| 108 | p.get(i, ev); |
---|
| 109 | bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); |
---|
| 110 | if (ok) { ev.setDouble(newval); p.set(i, ev); } |
---|
| 111 | return ok; |
---|
[109] | 112 | } |
---|
| 113 | |
---|
[168] | 114 | bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) |
---|
[109] | 115 | { |
---|
[168] | 116 | newval = 0; |
---|
| 117 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 118 | const char *n = p.id(i), *na = p.name(i); |
---|
| 119 | if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = CustomRnd(distrib_sigmo); else |
---|
| 120 | if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = CustomRnd(distrib_inertia); else |
---|
| 121 | if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = CustomRnd(distrib_force); else |
---|
| 122 | { |
---|
[670] | 123 | double mn, mx, df; |
---|
| 124 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[751] | 125 | newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true); |
---|
[168] | 126 | } |
---|
| 127 | return true; |
---|
[109] | 128 | } |
---|
| 129 | |
---|
[751] | 130 | double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits) |
---|
[109] | 131 | { |
---|
[751] | 132 | double result = RndGen.Gauss(current, stddev); |
---|
| 133 | if (type == 'd') |
---|
| 134 | { |
---|
| 135 | result = int(result + 0.5); |
---|
| 136 | if (result == current) result += randomN(2) * 2 - 1; //force some change |
---|
| 137 | } |
---|
| 138 | else |
---|
| 139 | { |
---|
| 140 | if (limit_precision_3digits) |
---|
| 141 | result = floor(result * 1000 + 0.5) / 1000.0; //round |
---|
| 142 | } |
---|
[168] | 143 | return result; |
---|
[109] | 144 | } |
---|
| 145 | |
---|
[751] | 146 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits) |
---|
[109] | 147 | { |
---|
[751] | 148 | double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits); |
---|
| 149 | //TODO consider that when boundary is touched (reflect+absorb below), the requested precision (3 digits) may change. Is it good or bad? |
---|
[146] | 150 | //reflect: |
---|
| 151 | if (result > mx) result = mx - (result - mx); else |
---|
[670] | 152 | if (result < mn) result = mn + (mn - result); |
---|
[146] | 153 | //absorb (just in case 'result' exceeded the allowed range so much): |
---|
[670] | 154 | if (result > mx) result = mx; else |
---|
[146] | 155 | if (result < mn) result = mn; |
---|
| 156 | return result; |
---|
[109] | 157 | } |
---|
| 158 | |
---|
[751] | 159 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits) |
---|
| 160 | { |
---|
| 161 | double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower |
---|
| 162 | return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits); |
---|
| 163 | } |
---|
| 164 | |
---|
[146] | 165 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
| 166 | { |
---|
[749] | 167 | p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
[146] | 168 | } |
---|
| 169 | |
---|
[749] | 170 | void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion) |
---|
| 171 | { |
---|
| 172 | if (p1.size() != p2.size()) |
---|
| 173 | { |
---|
| 174 | logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size()); |
---|
| 175 | return; |
---|
| 176 | } |
---|
| 177 | for (unsigned int i = 0; i < p1.size(); i++) |
---|
| 178 | { |
---|
| 179 | double v1 = p1[i]; |
---|
| 180 | double v2 = p2[i]; |
---|
| 181 | p1[i] = v1*proportion + v2*(1 - proportion); |
---|
| 182 | p2[i] = v2*proportion + v1*(1 - proportion); |
---|
| 183 | } |
---|
| 184 | } |
---|
| 185 | |
---|
[146] | 186 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
| 187 | { |
---|
[158] | 188 | char type1 = p1.type(i1)[0]; |
---|
| 189 | char type2 = p2.type(i2)[0]; |
---|
| 190 | if (type1 == 'f' && type2 == 'f') |
---|
[146] | 191 | { |
---|
| 192 | double v1 = p1.getDouble(i1); |
---|
| 193 | double v2 = p2.getDouble(i2); |
---|
| 194 | p1.setDouble(i1, v1*proportion + v2*(1 - proportion)); |
---|
| 195 | p2.setDouble(i2, v2*proportion + v1*(1 - proportion)); |
---|
| 196 | } |
---|
[158] | 197 | else |
---|
| 198 | if (type1 == 'd' && type2 == 'd') |
---|
| 199 | { |
---|
[670] | 200 | int v1 = p1.getInt(i1); |
---|
| 201 | int v2 = p2.getInt(i2); |
---|
| 202 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1*proportion + v2*(1 - proportion)); |
---|
| 203 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2*proportion + v1*(1 - proportion)); |
---|
[158] | 204 | } |
---|
| 205 | else |
---|
[375] | 206 | logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); |
---|
[146] | 207 | } |
---|
| 208 | |
---|
[121] | 209 | NeuroClass* GenoOperators::getRandomNeuroClass() |
---|
[109] | 210 | { |
---|
[673] | 211 | vector<NeuroClass*> active; |
---|
[168] | 212 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[673] | 213 | if (Neuro::getClass(i)->genactive) |
---|
| 214 | active.push_back(Neuro::getClass(i)); |
---|
| 215 | if (active.size() == 0) return NULL; else return active[randomN(active.size())]; |
---|
[109] | 216 | } |
---|
| 217 | |
---|
[673] | 218 | int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass*>& NClist) |
---|
| 219 | { |
---|
| 220 | vector<int> allowed; |
---|
| 221 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 222 | if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output |
---|
| 223 | allowed.push_back(i); |
---|
| 224 | if (allowed.size() == 0) return -1; else return allowed[randomN(allowed.size())]; |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass*>& NClist) |
---|
| 228 | { |
---|
| 229 | vector<int> allowed; |
---|
| 230 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 231 | if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more |
---|
| 232 | allowed.push_back(i); |
---|
| 233 | if (allowed.size() == 0) return -1; else return allowed[randomN(allowed.size())]; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | int GenoOperators::getRandomChar(const char *choices, const char *excluded) |
---|
| 237 | { |
---|
| 238 | int allowed_count = 0; |
---|
| 239 | for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 240 | if (allowed_count == 0) return -1; //no char is allowed |
---|
| 241 | int rnd_index = randomN(allowed_count) + 1; |
---|
| 242 | allowed_count = 0; |
---|
| 243 | for (size_t i = 0; i < strlen(choices); i++) |
---|
| 244 | { |
---|
| 245 | if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 246 | if (allowed_count == rnd_index) return i; |
---|
| 247 | } |
---|
| 248 | return -1; //never happens |
---|
| 249 | } |
---|
| 250 | |
---|
[121] | 251 | NeuroClass* GenoOperators::parseNeuroClass(char*& s) |
---|
[109] | 252 | { |
---|
[670] | 253 | int maxlen = (int)strlen(s); |
---|
| 254 | int NClen = 0; |
---|
| 255 | NeuroClass *NC = NULL; |
---|
[168] | 256 | for (int i = 0; i<Neuro::getClassCount(); i++) |
---|
| 257 | { |
---|
[670] | 258 | const char *ncname = Neuro::getClass(i)->name.c_str(); |
---|
| 259 | int ncnamelen = (int)strlen(ncname); |
---|
| 260 | if (maxlen >= ncnamelen && ncnamelen>NClen && (strncmp(s, ncname, ncnamelen) == 0)) |
---|
| 261 | { |
---|
| 262 | NC = Neuro::getClass(i); |
---|
| 263 | NClen = ncnamelen; |
---|
| 264 | } |
---|
[168] | 265 | } |
---|
[670] | 266 | s += NClen; |
---|
| 267 | return NC; |
---|
[109] | 268 | } |
---|
| 269 | |
---|
[168] | 270 | Neuro* GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) |
---|
[109] | 271 | { |
---|
[168] | 272 | if (!m) return NULL; |
---|
| 273 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 274 | if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); |
---|
| 275 | return NULL; //neuron of class 'nc' was not found |
---|
[109] | 276 | } |
---|
| 277 | |
---|
[168] | 278 | int GenoOperators::neuroClassProp(char*& s, NeuroClass *nc, bool also_v1_N_props) |
---|
[109] | 279 | { |
---|
[247] | 280 | int len = (int)strlen(s); |
---|
[168] | 281 | int Len = 0, I = -1; |
---|
| 282 | if (nc) |
---|
| 283 | { |
---|
| 284 | Param p = nc->getProperties(); |
---|
| 285 | for (int i = 0; i<p.getPropCount(); i++) |
---|
| 286 | { |
---|
| 287 | const char *n = p.id(i); |
---|
[247] | 288 | int l = (int)strlen(n); |
---|
[168] | 289 | if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
| 290 | if (also_v1_N_props) //recognize old properties symbols /=! |
---|
| 291 | { |
---|
| 292 | if (strcmp(n, "si") == 0) n = "/"; else |
---|
| 293 | if (strcmp(n, "in") == 0) n = "="; else |
---|
| 294 | if (strcmp(n, "fo") == 0) n = "!"; |
---|
[247] | 295 | l = (int)strlen(n); |
---|
[168] | 296 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
| 297 | } |
---|
| 298 | } |
---|
| 299 | } |
---|
| 300 | Neuro n; |
---|
| 301 | Param p = n.extraProperties(); |
---|
| 302 | for (int i = 0; i<p.getPropCount(); i++) |
---|
| 303 | { |
---|
| 304 | const char *n = p.id(i); |
---|
[247] | 305 | int l = (int)strlen(n); |
---|
[168] | 306 | if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } |
---|
| 307 | } |
---|
| 308 | s += Len; |
---|
| 309 | return I; |
---|
[109] | 310 | } |
---|
| 311 | |
---|
[121] | 312 | bool GenoOperators::isWS(const char c) |
---|
[168] | 313 | { |
---|
| 314 | return c == ' ' || c == '\n' || c == '\t' || c == '\r'; |
---|
| 315 | } |
---|
[109] | 316 | |
---|
[121] | 317 | void GenoOperators::skipWS(char *&s) |
---|
[158] | 318 | { |
---|
[168] | 319 | if (s == NULL) |
---|
[375] | 320 | logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!"); |
---|
[158] | 321 | else |
---|
[670] | 322 | while (isWS(*s)) s++; |
---|
[109] | 323 | } |
---|
| 324 | |
---|
[168] | 325 | bool GenoOperators::areAlike(char *g1, char *g2) |
---|
[109] | 326 | { |
---|
| 327 | while (*g1 || *g2) |
---|
| 328 | { |
---|
| 329 | skipWS(g1); |
---|
| 330 | skipWS(g2); |
---|
| 331 | if (*g1 != *g2) return false; //when difference |
---|
[168] | 332 | if (!*g1 && !*g2) break; //both end |
---|
| 333 | g1++; |
---|
| 334 | g2++; |
---|
[109] | 335 | } |
---|
| 336 | return true; //equal |
---|
| 337 | } |
---|
| 338 | |
---|
[168] | 339 | char* GenoOperators::strchrn0(const char *str, char ch) |
---|
| 340 | { |
---|
| 341 | return ch == 0 ? NULL : strchr((char*)str, ch); |
---|
| 342 | } |
---|
[109] | 343 | |
---|
[121] | 344 | bool GenoOperators::isNeuroClassName(const char firstchar) |
---|
[109] | 345 | { |
---|
[168] | 346 | return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; |
---|
[109] | 347 | } |
---|
| 348 | |
---|