source: cpp/frams/genetics/oper_fx.cpp @ 334

Last change on this file since 334 was 286, checked in by Maciej Komosinski, 10 years ago

Updated headers

  • Property svn:eol-style set to native
File size: 8.3 KB
RevLine 
[286]1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2015  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
[109]4
5#include <ctype.h>  //isupper()
[121]6#include "oper_fx.h"
[109]7#include <common/framsg.h>
8#include <common/nonstd_math.h>
9#include <frams/util/rndutil.h>
10
[168]11static double distrib_force[] =   // for '!'
[109]12{
[168]13        3,             // distribution 0 -__/ +1
14        0.001, 0.2,    // "slow" neurons
15        0.001, 1,
16        1, 1,          // "fast" neurons
[109]17};
[168]18static double distrib_inertia[] =  // for '='
[109]19{
[168]20        2,             // distribution 0 |..- +1
21        0, 0,          // "fast" neurons
22        0.7, 0.98,
[109]23};
[168]24static double distrib_sigmo[] =  // for '/'
[109]25{
[168]26        5,             // distribution -999 -..-^-..- +999
27        -999, -999,    //"perceptron"
28        999, 999,
29        -5, -1,        // nonlinear
30        1, 5,
31        -1, 1,         // ~linear
[109]32};
33
34
[168]35int GenoOperators::roulette(const double *probtab, const int count)
[109]36{
[168]37        double sum = 0;
38        int i;
39        for (i = 0; i < count; i++) sum += probtab[i];
40        double sel = rnd01*sum;
41        for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; }
42        return -1;
[109]43}
44
[168]45bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def)
[109]46{
[168]47        mn = mx = def = 0;
48        int defined = 0;
49        if (p->type(i)[0] == 'f')
50        {
51                double _mn = 0, _mx = 1, _def = 0.5;
52                defined = p->getMinMax(i, _mn, _mx, _def);
53                if (defined == 1) _mx = _mn + 1.0;
54                if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default
55                if (defined < 3) _def = (_mn + _mx) / 2.0;
56                mn = _mn; mx = _mx; def = _def;
57        }
58        if (p->type(i)[0] == 'd')
59        {
[247]60                paInt _mn = 0, _mx = 1, _def = 0;
[168]61                defined = p->getMinMax(i, _mn, _mx, _def);
62                if (defined == 1) _mx = _mn + 1;
63                if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default
64                if (defined < 3) _def = (_mn + _mx) / 2;
65                mn = _mn; mx = _mx; def = _def;
66        }
67        return defined == 3;
[109]68}
69
[121]70int GenoOperators::selectRandomProperty(Neuro* n)
[109]71{
[168]72        int neuext = n->extraProperties().getPropCount(),
73                neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount();
74        if (neuext + neucls == 0) return -1; //no properties in this neuron
75        int index = randomN(neuext + neucls);
76        if (index >= neuext) index = index - neuext + 100;
77        return index;
[109]78}
79
[168]80double GenoOperators::mutateNeuProperty(double current, Neuro *n, int i)
[109]81{
[168]82        if (i == -1) return mutateCreepNoLimit('f', current, -10, 10); //i==-1: mutating weight of neural connection
83        Param p;
84        if (i >= 100) { i -= 100; p = n->getClass()->getProperties(); }
85        else p = n->extraProperties();
86        double newval = current;
87        /*bool ok=*/getMutatedProperty(p, i, current, newval);
88        return newval;
[109]89}
90
[168]91bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i)
[109]92{
[168]93        double mn, mx, df;
94        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
95        getMinMaxDef(&p, i, mn, mx, df);
[109]96
[168]97        ExtValue ev;
98        p.get(i, ev);
99        ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx));
100        p.set(i, ev);
101        return true;
[109]102}
103
[168]104bool GenoOperators::mutateProperty(ParamInterface &p, int i)
[109]105{
[168]106        double newval;
107        ExtValue ev;
108        p.get(i, ev);
109        bool ok = getMutatedProperty(p, i, ev.getDouble(), newval);
110        if (ok) { ev.setDouble(newval); p.set(i, ev); }
111        return ok;
[109]112}
113
[168]114bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval)
[109]115{
[168]116        newval = 0;
117        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
118        const char *n = p.id(i), *na = p.name(i);
119        if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = CustomRnd(distrib_sigmo); else
120                if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = CustomRnd(distrib_inertia); else
121                        if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = CustomRnd(distrib_force); else
122                        {
123                                double mn, mx, df;
124                                getMinMaxDef(&p, i, mn, mx, df);
125                                newval = mutateCreep(p.type(i)[0], oldval, mn, mx);
126                        }
127        return true;
[109]128}
129
[168]130double GenoOperators::mutateCreepNoLimit(char type, double current, double mn, double mx)
[109]131{
[168]132        double result = RndGen.Gauss(current, (mx - mn) / 2 / 5); // /halfinterval, 5 times narrower
133        if (type == 'd') { result = int(result + 0.5); if (result == current) result += randomN(2) * 2 - 1; }
134        else result = floor(result * 1000 + 0.5) / 1000.0; //round
135        return result;
[109]136}
137
[146]138double GenoOperators::mutateCreep(char type, double current, double mn, double mx)
[109]139{
[146]140        double result = mutateCreepNoLimit(type, current, mn, mx); //TODO consider that when boundary is touched (reflect/absorb below), the default precision (3 digits) may change. Is it good or bad?
141        //reflect:
142        if (result > mx) result = mx - (result - mx); else
143                if (result<mn) result = mn + (mn - result);
144        //absorb (just in case 'result' exceeded the allowed range so much):
145        if (result>mx) result = mx; else
146                if (result < mn) result = mn;
147        return result;
[109]148}
149
[146]150void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO
151{
[247]152        p.setInt(index, (paInt)value); //TODO value=2.5 will result in 2 but we want it to be 2 or 3 with equal probability. value=2.1 would be mostly 2, rarely 3. Careful with negative values (test it!)
[146]153}
154
155void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion)
156{
[158]157        char type1 = p1.type(i1)[0];
158        char type2 = p2.type(i2)[0];
159        if (type1 == 'f' && type2 == 'f')
[146]160        {
161                double v1 = p1.getDouble(i1);
162                double v2 = p2.getDouble(i2);
163                p1.setDouble(i1, v1*proportion + v2*(1 - proportion));
164                p2.setDouble(i2, v2*proportion + v1*(1 - proportion));
165        }
[158]166        else
167                if (type1 == 'd' && type2 == 'd')
168                {
169                        int v1 = p1.getInt(i1);
170                        int v2 = p2.getInt(i2);
171                        setIntFromDoubleWithProbabilisticDithering(p1, i1, v1*proportion + v2*(1 - proportion));
172                        setIntFromDoubleWithProbabilisticDithering(p2, i2, v2*proportion + v1*(1 - proportion));
173                }
174                else
175                        FMprintf("GenoOperators", "linearMix", FMLV_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2);
[146]176}
177
178
[121]179NeuroClass* GenoOperators::getRandomNeuroClass()
[109]180{
181        SListTempl<NeuroClass*> active;
[168]182        for (int i = 0; i < Neuro::getClassCount(); i++)
183                if (Neuro::getClass(i)->genactive) active += Neuro::getClass(i);
[170]184        if (active.size() == 0) return NULL; else return active(randomN(active.size()));
[109]185}
186
[121]187NeuroClass* GenoOperators::parseNeuroClass(char*& s)
[109]188{
[247]189        int len = (int)strlen(s);
[168]190        int Len = 0;
191        NeuroClass *I = NULL;
192        for (int i = 0; i<Neuro::getClassCount(); i++)
193        {
194                const char *n = Neuro::getClass(i)->name;
[247]195                int l = (int)strlen(n);
[168]196                if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = Neuro::getClass(i); Len = l; }
197        }
198        s += Len;
199        return I;
[109]200}
201
[168]202Neuro* GenoOperators::findNeuro(const Model *m, const NeuroClass *nc)
[109]203{
[168]204        if (!m) return NULL;
205        for (int i = 0; i < m->getNeuroCount(); i++)
206                if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i);
207        return NULL; //neuron of class 'nc' was not found
[109]208}
209
[168]210int GenoOperators::neuroClassProp(char*& s, NeuroClass *nc, bool also_v1_N_props)
[109]211{
[247]212        int len = (int)strlen(s);
[168]213        int Len = 0, I = -1;
214        if (nc)
215        {
216                Param p = nc->getProperties();
217                for (int i = 0; i<p.getPropCount(); i++)
218                {
219                        const char *n = p.id(i);
[247]220                        int l = (int)strlen(n);
[168]221                        if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; }
222                        if (also_v1_N_props) //recognize old properties symbols /=!
223                        {
224                                if (strcmp(n, "si") == 0) n = "/"; else
225                                        if (strcmp(n, "in") == 0) n = "="; else
226                                                if (strcmp(n, "fo") == 0) n = "!";
[247]227                                l = (int)strlen(n);
[168]228                                if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; }
229                        }
230                }
231        }
232        Neuro n;
233        Param p = n.extraProperties();
234        for (int i = 0; i<p.getPropCount(); i++)
235        {
236                const char *n = p.id(i);
[247]237                int l = (int)strlen(n);
[168]238                if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; }
239        }
240        s += Len;
241        return I;
[109]242}
243
[121]244bool GenoOperators::isWS(const char c)
[168]245{
246        return c == ' ' || c == '\n' || c == '\t' || c == '\r';
247}
[109]248
[121]249void GenoOperators::skipWS(char *&s)
[158]250{
[168]251        if (s == NULL)
[158]252                FramMessage("GenoOperators", "skipWS", "NULL reference!", FMLV_WARN);
253        else
254        while (isWS(*s)) s++;
[109]255}
256
[168]257bool GenoOperators::areAlike(char *g1, char *g2)
[109]258{
259        while (*g1 || *g2)
260        {
261                skipWS(g1);
262                skipWS(g2);
263                if (*g1 != *g2) return false; //when difference
[168]264                if (!*g1 && !*g2) break; //both end
265                g1++;
266                g2++;
[109]267        }
268        return true; //equal
269}
270
[168]271char* GenoOperators::strchrn0(const char *str, char ch)
272{
273        return ch == 0 ? NULL : strchr((char*)str, ch);
274}
[109]275
[121]276bool GenoOperators::isNeuroClassName(const char firstchar)
[109]277{
[168]278        return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*';
[109]279}
280
Note: See TracBrowser for help on using the repository browser.