[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
| 2 | // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. |
---|
| 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include <ctype.h> //isupper() |
---|
[121] | 6 | #include "oper_fx.h" |
---|
[109] | 7 | #include <common/framsg.h> |
---|
| 8 | #include <common/nonstd_math.h> |
---|
| 9 | #include <frams/util/rndutil.h> |
---|
| 10 | |
---|
[168] | 11 | static double distrib_force[] = // for '!' |
---|
[109] | 12 | { |
---|
[168] | 13 | 3, // distribution 0 -__/ +1 |
---|
| 14 | 0.001, 0.2, // "slow" neurons |
---|
| 15 | 0.001, 1, |
---|
| 16 | 1, 1, // "fast" neurons |
---|
[109] | 17 | }; |
---|
[168] | 18 | static double distrib_inertia[] = // for '=' |
---|
[109] | 19 | { |
---|
[168] | 20 | 2, // distribution 0 |..- +1 |
---|
| 21 | 0, 0, // "fast" neurons |
---|
| 22 | 0.7, 0.98, |
---|
[109] | 23 | }; |
---|
[168] | 24 | static double distrib_sigmo[] = // for '/' |
---|
[109] | 25 | { |
---|
[168] | 26 | 5, // distribution -999 -..-^-..- +999 |
---|
| 27 | -999, -999, //"perceptron" |
---|
| 28 | 999, 999, |
---|
| 29 | -5, -1, // nonlinear |
---|
| 30 | 1, 5, |
---|
| 31 | -1, 1, // ~linear |
---|
[109] | 32 | }; |
---|
| 33 | |
---|
| 34 | |
---|
[168] | 35 | int GenoOperators::roulette(const double *probtab, const int count) |
---|
[109] | 36 | { |
---|
[168] | 37 | double sum = 0; |
---|
| 38 | int i; |
---|
| 39 | for (i = 0; i < count; i++) sum += probtab[i]; |
---|
| 40 | double sel = rnd01*sum; |
---|
| 41 | for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } |
---|
| 42 | return -1; |
---|
[109] | 43 | } |
---|
| 44 | |
---|
[168] | 45 | bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) |
---|
[109] | 46 | { |
---|
[168] | 47 | mn = mx = def = 0; |
---|
| 48 | int defined = 0; |
---|
| 49 | if (p->type(i)[0] == 'f') |
---|
| 50 | { |
---|
| 51 | double _mn = 0, _mx = 1, _def = 0.5; |
---|
| 52 | defined = p->getMinMax(i, _mn, _mx, _def); |
---|
| 53 | if (defined == 1) _mx = _mn + 1.0; |
---|
| 54 | if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default |
---|
| 55 | if (defined < 3) _def = (_mn + _mx) / 2.0; |
---|
| 56 | mn = _mn; mx = _mx; def = _def; |
---|
| 57 | } |
---|
| 58 | if (p->type(i)[0] == 'd') |
---|
| 59 | { |
---|
[247] | 60 | paInt _mn = 0, _mx = 1, _def = 0; |
---|
[168] | 61 | defined = p->getMinMax(i, _mn, _mx, _def); |
---|
| 62 | if (defined == 1) _mx = _mn + 1; |
---|
| 63 | if (_mx < _mn && defined == 3) _mn = _mx = _def; //only default was defined, let's assume min=max=default |
---|
| 64 | if (defined < 3) _def = (_mn + _mx) / 2; |
---|
| 65 | mn = _mn; mx = _mx; def = _def; |
---|
| 66 | } |
---|
| 67 | return defined == 3; |
---|
[109] | 68 | } |
---|
| 69 | |
---|
[121] | 70 | int GenoOperators::selectRandomProperty(Neuro* n) |
---|
[109] | 71 | { |
---|
[168] | 72 | int neuext = n->extraProperties().getPropCount(), |
---|
| 73 | neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); |
---|
| 74 | if (neuext + neucls == 0) return -1; //no properties in this neuron |
---|
| 75 | int index = randomN(neuext + neucls); |
---|
| 76 | if (index >= neuext) index = index - neuext + 100; |
---|
| 77 | return index; |
---|
[109] | 78 | } |
---|
| 79 | |
---|
[168] | 80 | double GenoOperators::mutateNeuProperty(double current, Neuro *n, int i) |
---|
[109] | 81 | { |
---|
[168] | 82 | if (i == -1) return mutateCreepNoLimit('f', current, -10, 10); //i==-1: mutating weight of neural connection |
---|
| 83 | Param p; |
---|
| 84 | if (i >= 100) { i -= 100; p = n->getClass()->getProperties(); } |
---|
| 85 | else p = n->extraProperties(); |
---|
| 86 | double newval = current; |
---|
| 87 | /*bool ok=*/getMutatedProperty(p, i, current, newval); |
---|
| 88 | return newval; |
---|
[109] | 89 | } |
---|
| 90 | |
---|
[168] | 91 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) |
---|
[109] | 92 | { |
---|
[168] | 93 | double mn, mx, df; |
---|
| 94 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 95 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[109] | 96 | |
---|
[168] | 97 | ExtValue ev; |
---|
| 98 | p.get(i, ev); |
---|
| 99 | ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx)); |
---|
| 100 | p.set(i, ev); |
---|
| 101 | return true; |
---|
[109] | 102 | } |
---|
| 103 | |
---|
[168] | 104 | bool GenoOperators::mutateProperty(ParamInterface &p, int i) |
---|
[109] | 105 | { |
---|
[168] | 106 | double newval; |
---|
| 107 | ExtValue ev; |
---|
| 108 | p.get(i, ev); |
---|
| 109 | bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); |
---|
| 110 | if (ok) { ev.setDouble(newval); p.set(i, ev); } |
---|
| 111 | return ok; |
---|
[109] | 112 | } |
---|
| 113 | |
---|
[168] | 114 | bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) |
---|
[109] | 115 | { |
---|
[168] | 116 | newval = 0; |
---|
| 117 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 118 | const char *n = p.id(i), *na = p.name(i); |
---|
| 119 | if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = CustomRnd(distrib_sigmo); else |
---|
| 120 | if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = CustomRnd(distrib_inertia); else |
---|
| 121 | if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = CustomRnd(distrib_force); else |
---|
| 122 | { |
---|
| 123 | double mn, mx, df; |
---|
| 124 | getMinMaxDef(&p, i, mn, mx, df); |
---|
| 125 | newval = mutateCreep(p.type(i)[0], oldval, mn, mx); |
---|
| 126 | } |
---|
| 127 | return true; |
---|
[109] | 128 | } |
---|
| 129 | |
---|
[168] | 130 | double GenoOperators::mutateCreepNoLimit(char type, double current, double mn, double mx) |
---|
[109] | 131 | { |
---|
[168] | 132 | double result = RndGen.Gauss(current, (mx - mn) / 2 / 5); // /halfinterval, 5 times narrower |
---|
| 133 | if (type == 'd') { result = int(result + 0.5); if (result == current) result += randomN(2) * 2 - 1; } |
---|
| 134 | else result = floor(result * 1000 + 0.5) / 1000.0; //round |
---|
| 135 | return result; |
---|
[109] | 136 | } |
---|
| 137 | |
---|
[146] | 138 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx) |
---|
[109] | 139 | { |
---|
[146] | 140 | double result = mutateCreepNoLimit(type, current, mn, mx); //TODO consider that when boundary is touched (reflect/absorb below), the default precision (3 digits) may change. Is it good or bad? |
---|
| 141 | //reflect: |
---|
| 142 | if (result > mx) result = mx - (result - mx); else |
---|
| 143 | if (result<mn) result = mn + (mn - result); |
---|
| 144 | //absorb (just in case 'result' exceeded the allowed range so much): |
---|
| 145 | if (result>mx) result = mx; else |
---|
| 146 | if (result < mn) result = mn; |
---|
| 147 | return result; |
---|
[109] | 148 | } |
---|
| 149 | |
---|
[146] | 150 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
| 151 | { |
---|
[247] | 152 | p.setInt(index, (paInt)value); //TODO value=2.5 will result in 2 but we want it to be 2 or 3 with equal probability. value=2.1 would be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
[146] | 153 | } |
---|
| 154 | |
---|
| 155 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
| 156 | { |
---|
[158] | 157 | char type1 = p1.type(i1)[0]; |
---|
| 158 | char type2 = p2.type(i2)[0]; |
---|
| 159 | if (type1 == 'f' && type2 == 'f') |
---|
[146] | 160 | { |
---|
| 161 | double v1 = p1.getDouble(i1); |
---|
| 162 | double v2 = p2.getDouble(i2); |
---|
| 163 | p1.setDouble(i1, v1*proportion + v2*(1 - proportion)); |
---|
| 164 | p2.setDouble(i2, v2*proportion + v1*(1 - proportion)); |
---|
| 165 | } |
---|
[158] | 166 | else |
---|
| 167 | if (type1 == 'd' && type2 == 'd') |
---|
| 168 | { |
---|
| 169 | int v1 = p1.getInt(i1); |
---|
| 170 | int v2 = p2.getInt(i2); |
---|
| 171 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1*proportion + v2*(1 - proportion)); |
---|
| 172 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2*proportion + v1*(1 - proportion)); |
---|
| 173 | } |
---|
| 174 | else |
---|
| 175 | FMprintf("GenoOperators", "linearMix", FMLV_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); |
---|
[146] | 176 | } |
---|
| 177 | |
---|
| 178 | |
---|
[121] | 179 | NeuroClass* GenoOperators::getRandomNeuroClass() |
---|
[109] | 180 | { |
---|
| 181 | SListTempl<NeuroClass*> active; |
---|
[168] | 182 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
| 183 | if (Neuro::getClass(i)->genactive) active += Neuro::getClass(i); |
---|
[170] | 184 | if (active.size() == 0) return NULL; else return active(randomN(active.size())); |
---|
[109] | 185 | } |
---|
| 186 | |
---|
[121] | 187 | NeuroClass* GenoOperators::parseNeuroClass(char*& s) |
---|
[109] | 188 | { |
---|
[247] | 189 | int len = (int)strlen(s); |
---|
[168] | 190 | int Len = 0; |
---|
| 191 | NeuroClass *I = NULL; |
---|
| 192 | for (int i = 0; i<Neuro::getClassCount(); i++) |
---|
| 193 | { |
---|
| 194 | const char *n = Neuro::getClass(i)->name; |
---|
[247] | 195 | int l = (int)strlen(n); |
---|
[168] | 196 | if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = Neuro::getClass(i); Len = l; } |
---|
| 197 | } |
---|
| 198 | s += Len; |
---|
| 199 | return I; |
---|
[109] | 200 | } |
---|
| 201 | |
---|
[168] | 202 | Neuro* GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) |
---|
[109] | 203 | { |
---|
[168] | 204 | if (!m) return NULL; |
---|
| 205 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 206 | if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); |
---|
| 207 | return NULL; //neuron of class 'nc' was not found |
---|
[109] | 208 | } |
---|
| 209 | |
---|
[168] | 210 | int GenoOperators::neuroClassProp(char*& s, NeuroClass *nc, bool also_v1_N_props) |
---|
[109] | 211 | { |
---|
[247] | 212 | int len = (int)strlen(s); |
---|
[168] | 213 | int Len = 0, I = -1; |
---|
| 214 | if (nc) |
---|
| 215 | { |
---|
| 216 | Param p = nc->getProperties(); |
---|
| 217 | for (int i = 0; i<p.getPropCount(); i++) |
---|
| 218 | { |
---|
| 219 | const char *n = p.id(i); |
---|
[247] | 220 | int l = (int)strlen(n); |
---|
[168] | 221 | if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
| 222 | if (also_v1_N_props) //recognize old properties symbols /=! |
---|
| 223 | { |
---|
| 224 | if (strcmp(n, "si") == 0) n = "/"; else |
---|
| 225 | if (strcmp(n, "in") == 0) n = "="; else |
---|
| 226 | if (strcmp(n, "fo") == 0) n = "!"; |
---|
[247] | 227 | l = (int)strlen(n); |
---|
[168] | 228 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
| 229 | } |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | Neuro n; |
---|
| 233 | Param p = n.extraProperties(); |
---|
| 234 | for (int i = 0; i<p.getPropCount(); i++) |
---|
| 235 | { |
---|
| 236 | const char *n = p.id(i); |
---|
[247] | 237 | int l = (int)strlen(n); |
---|
[168] | 238 | if (len >= l && l>Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } |
---|
| 239 | } |
---|
| 240 | s += Len; |
---|
| 241 | return I; |
---|
[109] | 242 | } |
---|
| 243 | |
---|
[121] | 244 | bool GenoOperators::isWS(const char c) |
---|
[168] | 245 | { |
---|
| 246 | return c == ' ' || c == '\n' || c == '\t' || c == '\r'; |
---|
| 247 | } |
---|
[109] | 248 | |
---|
[121] | 249 | void GenoOperators::skipWS(char *&s) |
---|
[158] | 250 | { |
---|
[168] | 251 | if (s == NULL) |
---|
[158] | 252 | FramMessage("GenoOperators", "skipWS", "NULL reference!", FMLV_WARN); |
---|
| 253 | else |
---|
| 254 | while (isWS(*s)) s++; |
---|
[109] | 255 | } |
---|
| 256 | |
---|
[168] | 257 | bool GenoOperators::areAlike(char *g1, char *g2) |
---|
[109] | 258 | { |
---|
| 259 | while (*g1 || *g2) |
---|
| 260 | { |
---|
| 261 | skipWS(g1); |
---|
| 262 | skipWS(g2); |
---|
| 263 | if (*g1 != *g2) return false; //when difference |
---|
[168] | 264 | if (!*g1 && !*g2) break; //both end |
---|
| 265 | g1++; |
---|
| 266 | g2++; |
---|
[109] | 267 | } |
---|
| 268 | return true; //equal |
---|
| 269 | } |
---|
| 270 | |
---|
[168] | 271 | char* GenoOperators::strchrn0(const char *str, char ch) |
---|
| 272 | { |
---|
| 273 | return ch == 0 ? NULL : strchr((char*)str, ch); |
---|
| 274 | } |
---|
[109] | 275 | |
---|
[121] | 276 | bool GenoOperators::isNeuroClassName(const char firstchar) |
---|
[109] | 277 | { |
---|
[168] | 278 | return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; |
---|
[109] | 279 | } |
---|
| 280 | |
---|