source: cpp/frams/genetics/genooperators.h @ 852

Last change on this file since 852 was 801, checked in by Maciej Komosinski, 7 years ago

Added a helper function that counts active neuron classes

  • Property svn:eol-style set to native
File size: 14.6 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2018  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5#ifndef _GENO_OPERATORS_H_
6#define _GENO_OPERATORS_H_
7
8#include <common/nonstd.h>
9#include <frams/model/model.h>
10
11/** @file */
12
13/** \name Return codes for genetic operators */
14//@{
15#define GENOPER_OK          0 ///<operation successful
16#define GENOPER_OPFAIL     -1 ///<operation failed or could not be completed
17#define GENOPER_REPAIR     -2 ///<do not use in Geno_fx. GenMan uses it in checkValidity()... but will not. only f4 uses it
18#define GENOPER_NOOPER     -3 ///<do not use in Geno_fx. GenMan uses it for "no suitable operator for this genotype format"
19//@}
20
21/** \name gene/character predefined styles (for style() method) */
22//@{
23#define GENSTYLE_NONE       0 ///<no style specified (=normal font)
24#define GENSTYLE_INVALID    1 ///<this char cannot be accepted
25#define GENSTYLE_BOLD       2 ///<bold
26#define GENSTYLE_ITALIC     4 ///<italic
27#define GENSTYLE_STRIKEOUT  8 ///<strikeout (not recommended)
28//UNDERLINE used to mark errors
29//@}
30
31/** \name other useful style/color macros */
32//@{
33#define GENRGB(r,g,b) ((uint32_t)(((uint8_t)(r)|((uint16_t)((uint8_t)(g))<<8))|(((uint32_t)(uint8_t)(b))<<16)))
34#define GENSTYLE_RGBS(r,g,b,s) ((uint32_t)((uint8_t)s)<<24 | GENRGB(r,g,b))
35#define GENSTYLE_CS(rgb,s) ((uint32_t)((uint8_t)s)<<24 | rgb)
36
37#define GENGETSTYLE(style) ((style)>>24)
38#define GENGETCOLOR(style) ((style)&0x00ffffff)
39#define GENGET_R(style) ((style)&0xff)
40#define GENGET_G(style) ((style>>8)&0xff)
41#define GENGET_B(style) ((style>>16)&0xff)
42
43#define GENCOLOR_TEXT    GENRGB(0,0,0) ///<recommended color to use for text genes
44#define GENCOLOR_NUMBER  GENRGB(200,0,0) ///<recommended color to use for number genes
45//@}
46
47///Base class for genetic operations on genotypes of some genetic format
48/**\author Maciej Komosinski
49
50When designing genetic operations on some representation, inherit your class
51(for example GenoOper_fMy) from GenoOperators. Define some methods,
52like mutate(), in your class, to allow for evolution.
53Ensure they have the same names and arguments as the corresponding
54virtual methods in Geno_fx. Set the 'supported_format' variable to the
55appropriate genetic representation ID.
56Whenever arguments are genotypes, they are without
57trailing characters which describe genetic format
58(for example, "p:", not "//0\np:").
59When allocating/reallocating char* parameters, use malloc, free, realloc, strdup, etc.
60Do not use new and delete.
61
62All the methods you might define are:
63- checkValidity()
64- validate()
65- mutate()
66- crossOver()
67- getSimplest()
68- style()
69
70Your code must not cause errors (like invalid memory access, memory
71leaks) on any arguments, even 'random' ones. GENOPER_OPFAIL should
72be returned when an operator cannot cope with its argument genotype.
73
74To compile your code, you may also need some SDK files.
75A simple example is Geno_ftest class (see \ref geno_ftest_example "C++ code" for details).
76A more realistic example is Geno_f4 derived from Geno_fx: refer to
77the available source on developmental encoding and f4 genotype format.*/
78
79class GenoOperators
80{
81public:
82        Param par;
83        char supported_format; ///<genotype format which is supported by this class ('6' for GenoOper_f6, 'F' for GenoOper_fF, etc.). Must be initialized in constructor
84        string name; ///<name of this set of genetic operators
85        const char **mutation_method_names; ///<array of names for mutation methods. If initialized (by new const char*[]), must have entries for each method index returned by mutate(geno,chg,METHOD).  If initialized, it is automatically freed by this destructor.
86        GenoOperators() : par(empty_paramtab) { supported_format = 'x'; name = "Default"; mutation_method_names = NULL; setDefaults(); }
87
88        /**Used to perform initializations of Param parameters that are not handled by the Param itself
89        (i.e. string parameters or fields that require some complex logic may be initialized here)*/
90        virtual void setDefaults() {}
91
92        /**Checks a genotype for minor mistakes and major errors.
93        \param geno genotype to be checked
94        \param genoname name of the genotype to be checked
95        \retval error_position 1-based (or 1 if no exact error position known)
96        \retval GENOPER_OK when the genotype is fully valid, and can be translated by the converter with \b no modifications nor tweaks*/
97        virtual int checkValidity(const char *geno, const char *genoname) { return GENOPER_NOOPER; }
98
99        /**Validates a genotype. The purpose of this function is to validate
100        obvious/minor errors (range overruns, invalid links, etc.). Do not try
101        to introduce entirely new genes in place of an error.
102        \param geno input/output: genotype to be validated
103        \param genoname name of the genotype to be validated
104        \retval GENOPER_OK must be returned in any case ("did my best to validate")*/
105        virtual int validate(char *&geno, const char *genoname) { return GENOPER_NOOPER; }
106
107        /**Mutates a genotype. Mutation should always change something.
108
109        Avoid unnecessary calls in your code. Every genotype argument passed to this
110        function is first checked, and validated if checkValidity() reported an error (or
111        if there is no checkValidity() implemented). Every resulting genotype is subject
112        to the same procedure, unless GENOPER_OPFAIL was returned. Thus you do not have
113        to call these functions on input and output genotypes, because they are validated
114        if needed.
115        \param geno input/output: genotype to be mutated
116        \param chg output: initialize with a value (in most cases 0..1) corresponding
117        to the amount of genotype mutated. For example, it could be the number of changed
118        genes divided by the total number of genes before mutation.
119        \param chg method: initialize with the ID (number) of mutation method used.
120        \retval GENOPER_OK
121        \retval GENOPER_OPFAIL
122        \sa
123        Mutation example to illustrate the exchange of pointers for \e geno.
124        The mutation adds random letter at the beginning or removes last letter from \e geno.
125        \code
126        {
127        int len=strlen(geno);
128        if (len==0 || random(2)==0) //add
129        {
130        method=0;
131        char* mutated=(char*)malloc(mutated,len+2); //allocate for mutated genotype
132        mutated[0]='A'+random(10); //first char random
133        strcpy(mutated+1,geno); //the rest is original
134        free(geno); //must take care of the original allocation
135        geno=mutated;
136        } else
137        {
138        method=1;
139        geno[len-1]=0; //simply shorten the string - remove last char
140        }
141        chg=1.0/max(len,1); //estimation of mutation strength, divby0-safe
142        } \endcode
143        */
144        virtual int mutate(char *&geno, float& chg, int &method) { method = -1; chg = -1; return GENOPER_NOOPER; }
145
146        /**Crosses over two genotypes. It is sufficient to return only one child (in \e g1) and set \e chg1 only, then \e g2 must equal "".
147
148        Avoid unnecessary calls in your code. Every genotype argument passed to this
149        function is first checked, and validated if checkValidity() reported an error (or
150        if there is no checkValidity() implemented). Every resulting genotype is subject
151        to the same procedure, unless GENOPER_OPFAIL was returned. Thus you do not have
152        to call these functions on input and output genotypes, because they are validated
153        if needed.
154        \param g1 input/output: parent1 genotype, initialize with child1
155        \param g2 input/output: parent2 genotype, initialize with child2 if both children are available
156        \param chg1 output: initialize with the fraction of parent1 genes in child1 (parent2 has the rest)
157        \param chg2 output: initialize with the fraction of parent2 genes in child2 (parent1 has the rest)
158        \retval GENOPER_OK
159        \retval GENOPER_OPFAIL
160        \sa mutate() for an example*/
161        virtual int crossOver(char *&g1, char *&g2, float& chg1, float& chg2) { chg1 = chg2 = -1; return GENOPER_NOOPER; }
162
163        /**\return a pointer to the simplest genotype string*/
164        virtual const char* getSimplest() { return NULL; }
165
166        /**You may want to have your genotype colored. This method provides desired character styles for genes.
167        \param geno genotype
168        \param pos 0-based char offset
169        \retval number-encoded visual style (and validity) of the genotype char at \e geno[pos].
170        Assume white background.
171        \sa GENSTYLE_* macros, like GENSTYLE_BOLD*/
172        virtual uint32_t style(const char *geno, int pos) { return GENSTYLE_RGBS(0, 0, 0, GENSTYLE_NONE); }
173
174        ///currently not used (similarity of two genotypes)
175        virtual float similarity(const char*, const char*) { return GENOPER_NOOPER; }
176        virtual ~GenoOperators() { if (mutation_method_names) { delete[]mutation_method_names; mutation_method_names = NULL; } }
177        //   virtual char getFormat() {return 255;} //returns supported genotype format, for ex. '1'
178        //   virtual int enabled() {return 1;} // should be enabled by default
179
180        /** \name Some helpful methods for you */
181        //@{
182        static int roulette(const double *probtab, const int count);    ///<returns random index according to probabilities in the \e probtab table or -1 if all probs are zero. \e count is the number of elements in \e probtab.
183        static bool getMinMaxDef(ParamInterface *p, int propindex, double &mn, double &mx, double &def); ///<perhaps a more useful (higher-level) way to obtain min/max/def info for integer and double properties. Returns true if min/max/def was really available (otherwise it is just invented).
184        static int selectRandomProperty(Neuro* n); ///<selects random property (either 0-based extraproperty of Neuro or 100-based property of its NeuroClass). -1 if Neuro has no properties.
185        static double mutateNeuProperty(double current, Neuro *n, int propindex); ///<returns value \e current mutated for the property \e propindex of NeuroClass \e nc or for extraproperty (\e propindex - 100) of Neuro. Neuro is used as read-only. Give \e propindex == -1 to mutate connection weight (\e nc is then ignored).
186        static bool mutatePropertyNaive(ParamInterface &p, int propindex); ///<creep-mutate selected property. Returns true when success. mutateProperty() should be used instead of this function.
187        static bool mutateProperty(ParamInterface &p, int propindex); ///<like mutatePropertyNaive(), but uses special probability distributions for some neuron properties.
188        static bool getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval); ///<like mutateProperty(), but just returns \e newval, does not get nor set it using \e p.
189        static double mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits); ///<returns \e current value creep-mutated with Gaussian distribution and \e stddev standard deviation. Precision limited to 3 digits after comma when \e limit_precision_3digits is true. \e type must be either 'd' (integer) or 'f' (float/double).
190        static double mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits); ///<just as mutateCreepNoLimit(), but forces mutated value into the [mn,mx] range using the 'reflect' approach.
191        static double mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits); ///<just as mutateCreepNoLimit(), but forces mutated value into the [\e mn,\e mx] range using the 'reflect' approach and assumes standard deviation to be a fraction of the mx-mn interval width.
192        static void setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value); ///<sets a double value in an integer field; when a value is non-integer, applies random "dithering" so that both lower and higher integer value have some chance to be set.
193        static void linearMix(vector<double> &p1, vector<double> &p2, double proportion); ///<mixes two real-valued vectors; inherited proportion should be within [0,1]; 1.0 does not change values (all inherited), 0.5 causes both vectors to become their average, 0.0 swaps values (none inherited).
194        static void linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion); ///<mixes i1'th and i2'th properties of p1 and p2; inherited proportion should be within [0,1]; 1.0 does not change values (all inherited), 0.5 causes both properties to become their average, 0.0 swaps values (none inherited). For integer properties applies random "dithering" when necessary.
195        static int getActiveNeuroClassCount(); ///<returns active class count
196        static NeuroClass* getRandomNeuroClass(); ///<returns random neuroclass or NULL when no active classes.
197        static NeuroClass* getRandomNeuroClassWithOutput(); ///<returns random neuroclass with output or NULL when no active classes.
198        static NeuroClass* getRandomNeuroClassWithInput(); ///<returns random neuroclass with input or NULL when no active classes.
199        static NeuroClass* getRandomNeuroClassWithOutputAndNoInputs(); ///<returns random sensor or NULL when no active classes.
200        static NeuroClass* getRandomSensorProb(float prob); ///<returns random sensor (only-output neuron class) with presented probability or NULL. \e prob probability of picking neuron class.
201        static int getRandomNeuroClassWithOutput(const vector<NeuroClass*>& NClist); ///<returns index of random NeuroClass from the NClist or -1 (no neurons on the list that provide output) \e NClist list of available neuron classes
202        static int getRandomNeuroClassWithInput(const vector<NeuroClass*>& NClist); ///<returns index of random NeuroClass from the NClist or -1 (no neurons on the list that want input(s)) \e NClist list of available neuron classes
203        static int getRandomChar(const char *choices, const char *excluded); ///<returns index of a random character from 'choices' excluding 'excluded', or -1 when everything is excluded or 'choices' is empty.
204        static NeuroClass* parseNeuroClass(char *&s); ///<returns longest matching neuroclass or NULL if the string does not begin with a valid neuroclass name. Advances \e s pointer.
205        static Neuro* findNeuro(const Model *m, const NeuroClass *nc); ///<returns pointer to first Neuro of class \e nc, or NULL if there is no such Neuro.
206        static int neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props = false); ///<returns 0-based property number for \e neuroclass, 100-based extraproperty number for Neuro, or -1 if the string does not begin with a valid property name. Advance \e s pointer if success.
207        static bool isWS(const char c); ///<is \e c a whitespace char?
208        static void skipWS(char *&s); ///<advances pointer \e s skipping whitespaces.
209        static bool areAlike(char*, char*); ///<compares two text strings skipping whitespaces. Returns 1 when equal, 0 when different.
210        static char* strchrn0(const char *str, char ch); ///<like strchr, but does not find zero char in \e str.
211        static bool canStartNeuroClassName(const char firstchar); ///<determines if \e firstchar may start NeuroClass name. If not, it may start NeuroClass' (or Neuro's) property name.
212        //@}
213};
214
215
216//
217// custom distributions for mutations of various parameters
218//
219/*
220static double distrib_weight[]=
221{
2225,                 // distribution -999 _-^_^-_ +999
223-999, 999,         // each weight value may be useful, especially...
224-5, -0.3,        // ...little non-zero values
225-3, -0.6,
2260.6, 3,
2270.3, 5,
228};
229*/
230
231#endif
Note: See TracBrowser for help on using the repository browser.