source: cpp/frams/genetics/genooperators.cpp @ 963

Last change on this file since 963 was 959, checked in by Maciej Komosinski, 4 years ago

Added a high-level neuron mutation function

  • Property svn:eol-style set to native
File size: 13.7 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2020  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5#include <ctype.h>  //isupper()
6#include "genooperators.h"
7#include <common/log.h>
8#include <common/nonstd_math.h>
9#include <frams/util/rndutil.h>
10
11static double distrib_force[] =   // for '!'
12{
13        3,             // distribution 0 -__/ +1
14        0.001, 0.2,    // "slow" neurons
15        0.001, 1,
16        1, 1,          // "fast" neurons
17};
18static double distrib_inertia[] =  // for '='
19{
20        2,             // distribution 0 |..- +1
21        0, 0,          // "fast" neurons
22        0.7, 0.98,
23};
24static double distrib_sigmo[] =  // for '/'
25{
26        5,             // distribution -999 -..-^-..- +999
27        -999, -999,    //"perceptron"
28        999, 999,
29        -5, -1,        // nonlinear
30        1, 5,
31        -1, 1,         // ~linear
32};
33
34
35int GenoOperators::roulette(const double *probtab, const int count)
36{
37        double sum = 0;
38        int i;
39        for (i = 0; i < count; i++) sum += probtab[i];
40        double sel = rndDouble(sum);
41        for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; }
42        return -1;
43}
44
45bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def)
46{
47        mn = mx = def = 0;
48        int defined = 0;
49        if (p->type(i)[0] == 'f')
50        {
51                double _mn = 0, _mx = 1, _def = 0.5;
52                defined = p->getMinMaxDouble(i, _mn, _mx, _def);
53                if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble...
54                if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble...
55                {
56                        _mn = _def - 500.0;
57                        _mx = _def + 500.0;
58                }
59                if (defined < 3) _def = (_mn + _mx) / 2.0;
60                mn = _mn; mx = _mx; def = _def;
61        }
62        if (p->type(i)[0] == 'd')
63        {
64                paInt _mn = 0, _mx = 1, _def = 0;
65                defined = p->getMinMaxInt(i, _mn, _mx, _def);
66                if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint...
67                if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint...
68                {
69                        _mn = _def - 500;
70                        _mx = _def + 500;
71                }
72                if (defined < 3) _def = (_mn + _mx) / 2;
73                mn = _mn; mx = _mx; def = _def;
74        }
75        return defined == 3;
76}
77
78bool GenoOperators::mutateRandomNeuronOrNeuroclassProperty(Neuro* n)
79{
80        bool mutated = false;
81        int prop = selectRandomNeuronProperty(n);
82        if (prop >= 0)
83        {
84                if (prop >= GenoOperators::NEUROCLASS_PROP_OFFSET)
85                {
86                        SyntParam par = n->classProperties();   //commits changes when p is destroyed
87                        mutated = mutateProperty(par, prop - GenoOperators::NEUROCLASS_PROP_OFFSET);
88                }
89                else
90                {
91                        Param par = n->extraProperties();
92                        mutated = mutateProperty(par, prop);
93                }
94        }
95        return mutated;
96}
97
98int GenoOperators::selectRandomNeuronProperty(Neuro *n)
99{
100        int neuext = n->extraProperties().getPropCount(),
101                neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount();
102        if (neuext + neucls == 0) return -1; //no properties in this neuron
103        int index = rndUint(neuext + neucls);
104        if (index >= neuext) index = index - neuext + NEUROCLASS_PROP_OFFSET;
105        return index;
106}
107
108double GenoOperators::mutateNeuronProperty(double current, Neuro *n, int i)
109{
110        if (i == -1) return mutateCreepNoLimit('f', current, 2, true); //i==-1: mutating weight of neural connection
111        Param p;
112        if (i >= NEUROCLASS_PROP_OFFSET) { i -= NEUROCLASS_PROP_OFFSET; p = n->getClass()->getProperties(); }
113        else p = n->extraProperties();
114        double newval = current;
115        /*bool ok=*/getMutatedProperty(p, i, current, newval);
116        return newval;
117}
118
119bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i)
120{
121        double mn, mx, df;
122        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
123        getMinMaxDef(&p, i, mn, mx, df);
124
125        ExtValue ev;
126        p.get(i, ev);
127        ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true));
128        p.set(i, ev);
129        return true;
130}
131
132bool GenoOperators::mutateProperty(ParamInterface &p, int i)
133{
134        double newval;
135        ExtValue ev;
136        p.get(i, ev);
137        bool ok = getMutatedProperty(p, i, ev.getDouble(), newval);
138        if (ok) { ev.setDouble(newval); p.set(i, ev); }
139        return ok;
140}
141
142bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval)
143{
144        newval = 0;
145        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
146        const char *n = p.id(i), *na = p.name(i);
147        if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = CustomRnd(distrib_sigmo); else
148                if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = CustomRnd(distrib_inertia); else
149                        if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = CustomRnd(distrib_force); else
150                        {
151                                double mn, mx, df;
152                                getMinMaxDef(&p, i, mn, mx, df);
153                                newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true);
154                        }
155        return true;
156}
157
158double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits)
159{
160        double result = RndGen.Gauss(current, stddev);
161        if (type == 'd')
162        {
163                result = int(result + 0.5);
164                if (result == current) result += rndUint(2) * 2 - 1; //force some change
165        }
166        else
167        {
168                if (limit_precision_3digits)
169                        result = floor(result * 1000 + 0.5) / 1000.0; //round
170        }
171        return result;
172}
173
174double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits)
175{
176        double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits);
177        if (result<mn || result>mx) //exceeds boundary, so bring to the allowed range
178        {
179                //reflect:
180                if (result > mx) result = mx - (result - mx); else
181                        if (result < mn) result = mn + (mn - result);
182                //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary):
183                if (result > mx) result = mn + fmod(result - mx, mx - mn); else
184                        if (result < mn) result = mn + fmod(mn - result, mx - mn);
185                if (limit_precision_3digits)
186                {
187                        //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered)
188                        double result_try = floor(result * 1000 + 0.5) / 1000.0; //round
189                        if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value
190                }
191        }
192        return result;
193}
194
195double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits)
196{
197        double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower
198        return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits);
199}
200
201void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO
202{
203        p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!)
204}
205
206void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion)
207{
208        if (p1.size() != p2.size())
209        {
210                logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size());
211                return;
212        }
213        for (unsigned int i = 0; i < p1.size(); i++)
214        {
215                double v1 = p1[i];
216                double v2 = p2[i];
217                p1[i] = v1 * proportion + v2 * (1 - proportion);
218                p2[i] = v2 * proportion + v1 * (1 - proportion);
219        }
220}
221
222void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion)
223{
224        char type1 = p1.type(i1)[0];
225        char type2 = p2.type(i2)[0];
226        if (type1 == 'f' && type2 == 'f')
227        {
228                double v1 = p1.getDouble(i1);
229                double v2 = p2.getDouble(i2);
230                p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion));
231                p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion));
232        }
233        else
234                if (type1 == 'd' && type2 == 'd')
235                {
236                        int v1 = p1.getInt(i1);
237                        int v2 = p2.getInt(i2);
238                        setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion));
239                        setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion));
240                }
241                else
242                        logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2);
243}
244
245int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type)
246{
247        int count = 0;
248        for (int i = 0; i < Neuro::getClassCount(); i++)
249        {
250                NeuroClass *nc = Neuro::getClass(i);
251                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive)
252                        count++;
253        }
254        return count;
255}
256
257NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type)
258{
259        vector<NeuroClass *> active;
260        for (int i = 0; i < Neuro::getClassCount(); i++)
261        {
262                NeuroClass *nc = Neuro::getClass(i);
263                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive)
264                        active.push_back(nc);
265        }
266        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
267}
268
269NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type)
270{
271        vector<NeuroClass *> active;
272        for (int i = 0; i < Neuro::getClassCount(); i++)
273        {
274                NeuroClass *nc = Neuro::getClass(i);
275                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0)
276                        active.push_back(nc);
277        }
278        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
279}
280
281NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type)
282{
283        vector<NeuroClass *> active;
284        for (int i = 0; i < Neuro::getClassCount(); i++)
285        {
286                NeuroClass *nc = Neuro::getClass(i);
287                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0)
288                        active.push_back(nc);
289        }
290        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
291}
292
293NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndNoInputs(Model::ShapeType for_shape_type)
294{
295        vector<NeuroClass *> active;
296        for (int i = 0; i < Neuro::getClassCount(); i++)
297        {
298                NeuroClass *nc = Neuro::getClass(i);
299                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0)
300                        active.push_back(nc);
301        }
302        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
303}
304
305int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass *> &NClist)
306{
307        vector<int> allowed;
308        for (size_t i = 0; i < NClist.size(); i++)
309                if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output
310                        allowed.push_back(i);
311        if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())];
312}
313
314int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass *> &NClist)
315{
316        vector<int> allowed;
317        for (size_t i = 0; i < NClist.size(); i++)
318                if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more                 
319                        allowed.push_back(i);
320        if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())];
321}
322
323int GenoOperators::getRandomChar(const char *choices, const char *excluded)
324{
325        int allowed_count = 0;
326        for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++;
327        if (allowed_count == 0) return -1; //no char is allowed
328        int rnd_index = rndUint(allowed_count) + 1;
329        allowed_count = 0;
330        for (size_t i = 0; i < strlen(choices); i++)
331        {
332                if (!strchrn0(excluded, choices[i])) allowed_count++;
333                if (allowed_count == rnd_index) return i;
334        }
335        return -1; //never happens
336}
337
338NeuroClass *GenoOperators::parseNeuroClass(char *&s)
339{
340        int maxlen = (int)strlen(s);
341        int NClen = 0;
342        NeuroClass *NC = NULL;
343        for (int i = 0; i < Neuro::getClassCount(); i++)
344        {
345                const char *ncname = Neuro::getClass(i)->name.c_str();
346                int ncnamelen = (int)strlen(ncname);
347                if (maxlen >= ncnamelen && ncnamelen > NClen && (strncmp(s, ncname, ncnamelen) == 0))
348                {
349                        NC = Neuro::getClass(i);
350                        NClen = ncnamelen;
351                }
352        }
353        s += NClen;
354        return NC;
355}
356
357Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc)
358{
359        if (!m) return NULL;
360        for (int i = 0; i < m->getNeuroCount(); i++)
361                if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i);
362        return NULL; //neuron of class 'nc' was not found
363}
364
365int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props)
366{
367        int len = (int)strlen(s);
368        int Len = 0, I = -1;
369        if (nc)
370        {
371                Param p = nc->getProperties();
372                for (int i = 0; i < p.getPropCount(); i++)
373                {
374                        const char *n = p.id(i);
375                        int l = (int)strlen(n);
376                        if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; }
377                        if (also_v1_N_props) //recognize old properties symbols /=!
378                        {
379                                if (strcmp(n, "si") == 0) n = "/"; else
380                                        if (strcmp(n, "in") == 0) n = "="; else
381                                                if (strcmp(n, "fo") == 0) n = "!";
382                                l = (int)strlen(n);
383                                if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; }
384                        }
385                }
386        }
387        Neuro n;
388        Param p = n.extraProperties();
389        for (int i = 0; i < p.getPropCount(); i++)
390        {
391                const char *n = p.id(i);
392                int l = (int)strlen(n);
393                if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; }
394        }
395        s += Len;
396        return I;
397}
398
399bool GenoOperators::isWS(const char c)
400{
401        return c == ' ' || c == '\n' || c == '\t' || c == '\r';
402}
403
404void GenoOperators::skipWS(char *&s)
405{
406        if (s == NULL)
407                logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!");
408        else
409                while (isWS(*s)) s++;
410}
411
412bool GenoOperators::areAlike(char *g1, char *g2)
413{
414        while (*g1 || *g2)
415        {
416                skipWS(g1);
417                skipWS(g2);
418                if (*g1 != *g2) return false; //when difference
419                if (!*g1 && !*g2) break; //both end
420                g1++;
421                g2++;
422        }
423        return true; //equal
424}
425
426char *GenoOperators::strchrn0(const char *str, char ch)
427{
428        return ch == 0 ? NULL : strchr((char *)str, ch);
429}
430
431bool GenoOperators::canStartNeuroClassName(const char firstchar)
432{
433        return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*';
434}
Note: See TracBrowser for help on using the repository browser.