// This file is a part of Framsticks SDK. http://www.framsticks.com/ // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. // See LICENSE.txt for details. #include //isupper() #include "genooperators.h" #include #include #include // // custom distributions for mutations of various parameters // static double distrib_force[] = // for '!' { 3, // distribution 0 -__/ +1 0.001, 0.2, // "slow" neurons 0.001, 1, 1, 1, // "fast" neurons }; static double distrib_inertia[] = // for '=' { 2, // distribution 0 |..- +1 0, 0, // "fast" neurons 0.7, 0.98, }; static double distrib_sigmo[] = // for '/' { 5, // distribution -999 -..-^-..- +999 -999, -999, //"perceptron" 999, 999, -5, -1, // nonlinear 1, 5, -1, 1, // ~linear }; /* static double distrib_weight[] = { 5, // distribution -999 _-^_^-_ +999 -999, 999, // each weight value may be useful, especially... -5, -0.3, // ...little non-zero values -3, -0.6, 0.6, 3, 0.3, 5, }; */ int GenoOperators::roulette(const double *probtab, const int count) { double sum = 0; int i; for (i = 0; i < count; i++) sum += probtab[i]; double sel = rndDouble(sum); for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } return -1; } bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) { mn = mx = def = 0; int defined = 0; if (p->type(i)[0] == 'f') { double _mn = 0, _mx = 1, _def = 0.5; defined = p->getMinMaxDouble(i, _mn, _mx, _def); if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble... if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble... { _mn = _def - 500.0; _mx = _def + 500.0; } if (defined < 3) _def = (_mn + _mx) / 2.0; mn = _mn; mx = _mx; def = _def; } if (p->type(i)[0] == 'd') { paInt _mn = 0, _mx = 1, _def = 0; defined = p->getMinMaxInt(i, _mn, _mx, _def); if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint... if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint... { _mn = _def - 500; _mx = _def + 500; } if (defined < 3) _def = (_mn + _mx) / 2; mn = _mn; mx = _mx; def = _def; } return defined == 3; } bool GenoOperators::mutateRandomNeuroClassProperty(Neuro* n) { bool mutated = false; int prop = selectRandomNeuroClassProperty(n); if (prop >= 0) { if (prop >= GenoOperators::NEUROCLASS_PROP_OFFSET) { SyntParam par = n->classProperties(); //commits changes when this object is destroyed mutated = mutateProperty(par, prop - GenoOperators::NEUROCLASS_PROP_OFFSET); } else { Param par = n->extraProperties(); mutated = mutateProperty(par, prop); } } return mutated; } int GenoOperators::selectRandomNeuroClassProperty(Neuro *n) { int neuext = n->extraProperties().getPropCount(), neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); if (neuext + neucls == 0) return -1; //no properties in this neuron int index = rndUint(neuext + neucls); if (index >= neuext) index = index - neuext + NEUROCLASS_PROP_OFFSET; return index; } double GenoOperators::getMutatedNeuroClassProperty(double current, Neuro *n, int i) { if (i == -1) { logPrintf("GenoOperators", "getMutatedNeuroClassProperty", LOG_WARN, "Deprecated usage in C++ source: to mutate connection weight, use getMutatedNeuronConnectionWeight()."); return getMutatedNeuronConnectionWeight(current); } Param p; if (i >= NEUROCLASS_PROP_OFFSET) { i -= NEUROCLASS_PROP_OFFSET; p = n->getClass()->getProperties(); } else p = n->extraProperties(); double newval = current; /*bool ok=*/getMutatedProperty(p, i, current, newval); return newval; } double GenoOperators::getMutatedNeuronConnectionWeight(double current) { return mutateCreepNoLimit('f', current, 2, true); } bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) { double mn, mx, df; if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate getMinMaxDef(&p, i, mn, mx, df); ExtValue ev; p.get(i, ev); ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true)); p.set(i, ev); return true; } bool GenoOperators::mutateProperty(ParamInterface &p, int i) { double newval; ExtValue ev; p.get(i, ev); bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); if (ok) { ev.setDouble(newval); p.set(i, ev); } return ok; } bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) { newval = 0; if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate const char *n = p.id(i), *na = p.name(i); if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = round(CustomRnd(distrib_sigmo), 3); else if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = round(CustomRnd(distrib_inertia), 3); else if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = round(CustomRnd(distrib_force), 3); else { double mn, mx, df; getMinMaxDef(&p, i, mn, mx, df); newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true); } return true; } double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits) { double result = RndGen.Gauss(current, stddev); if (type == 'd') { result = int(result + 0.5); if (result == current) result += rndUint(2) * 2 - 1; //force some change } else { if (limit_precision_3digits) result = round(result, 3); } return result; } double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits) { double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits); if (resultmx) //exceeds boundary, so bring to the allowed range { //reflect: if (result > mx) result = mx - (result - mx); else if (result < mn) result = mn + (mn - result); //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary): if (result > mx) result = mn + fmod(result - mx, mx - mn); else if (result < mn) result = mn + fmod(mn - result, mx - mn); if (limit_precision_3digits) { //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered) double result_try = round(result, 3); if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value } } return result; } double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits) { double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits); } void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO { p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!) } void GenoOperators::linearMix(vector &p1, vector &p2, double proportion) { if (p1.size() != p2.size()) { logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size()); return; } for (unsigned int i = 0; i < p1.size(); i++) { double v1 = p1[i]; double v2 = p2[i]; p1[i] = v1 * proportion + v2 * (1 - proportion); p2[i] = v2 * proportion + v1 * (1 - proportion); } } void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) { char type1 = p1.type(i1)[0]; char type2 = p2.type(i2)[0]; if (type1 == 'f' && type2 == 'f') { double v1 = p1.getDouble(i1); double v2 = p2.getDouble(i2); p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion)); p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion)); } else if (type1 == 'd' && type2 == 'd') { int v1 = p1.getInt(i1); int v2 = p2.getInt(i2); setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion)); setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion)); } else logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); } int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type) { int count = 0; for (int i = 0; i < Neuro::getClassCount(); i++) { NeuroClass *nc = Neuro::getClass(i); if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) count++; } return count; } NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type) { vector active; for (int i = 0; i < Neuro::getClassCount(); i++) { NeuroClass *nc = Neuro::getClass(i); if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) active.push_back(nc); } if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; } NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type) { vector active; for (int i = 0; i < Neuro::getClassCount(); i++) { NeuroClass *nc = Neuro::getClass(i); if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0) active.push_back(nc); } if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; } NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type) { vector active; for (int i = 0; i < Neuro::getClassCount(); i++) { NeuroClass *nc = Neuro::getClass(i); if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0) active.push_back(nc); } if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; } NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndNoInputs(Model::ShapeType for_shape_type) { vector active; for (int i = 0; i < Neuro::getClassCount(); i++) { NeuroClass *nc = Neuro::getClass(i); if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0) active.push_back(nc); } if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; } int GenoOperators::getRandomNeuroClassWithOutput(const vector &NClist) { vector allowed; for (size_t i = 0; i < NClist.size(); i++) if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output allowed.push_back(i); if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; } int GenoOperators::getRandomNeuroClassWithInput(const vector &NClist) { vector allowed; for (size_t i = 0; i < NClist.size(); i++) if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more allowed.push_back(i); if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; } int GenoOperators::getRandomChar(const char *choices, const char *excluded) { int allowed_count = 0; for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++; if (allowed_count == 0) return -1; //no char is allowed int rnd_index = rndUint(allowed_count) + 1; allowed_count = 0; for (size_t i = 0; i < strlen(choices); i++) { if (!strchrn0(excluded, choices[i])) allowed_count++; if (allowed_count == rnd_index) return i; } return -1; //never happens } NeuroClass *GenoOperators::parseNeuroClass(char *&s) { int maxlen = (int)strlen(s); int NClen = 0; NeuroClass *NC = NULL; for (int i = 0; i < Neuro::getClassCount(); i++) { const char *ncname = Neuro::getClass(i)->name.c_str(); int ncnamelen = (int)strlen(ncname); if (maxlen >= ncnamelen && ncnamelen > NClen && (strncmp(s, ncname, ncnamelen) == 0)) { NC = Neuro::getClass(i); NClen = ncnamelen; } } s += NClen; return NC; } Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) { if (!m) return NULL; for (int i = 0; i < m->getNeuroCount(); i++) if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); return NULL; //neuron of class 'nc' was not found } int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props) { int len = (int)strlen(s); int Len = 0, I = -1; if (nc) { Param p = nc->getProperties(); for (int i = 0; i < p.getPropCount(); i++) { const char *n = p.id(i); int l = (int)strlen(n); if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } if (also_v1_N_props) //recognize old symbols of properties: /=! { if (strcmp(n, "si") == 0) n = "/"; else if (strcmp(n, "in") == 0) n = "="; else if (strcmp(n, "fo") == 0) n = "!"; l = (int)strlen(n); if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } } } } Neuro n; Param p = n.extraProperties(); for (int i = 0; i < p.getPropCount(); i++) { const char *n = p.id(i); int l = (int)strlen(n); if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } } s += Len; return I; } bool GenoOperators::isWS(const char c) { return c == ' ' || c == '\n' || c == '\t' || c == '\r'; } void GenoOperators::skipWS(char *&s) { if (s == NULL) logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!"); else while (isWS(*s)) s++; } bool GenoOperators::areAlike(char *g1, char *g2) { while (*g1 || *g2) { skipWS(g1); skipWS(g2); if (*g1 != *g2) return false; //when difference if (!*g1 && !*g2) break; //both end g1++; g2++; } return true; //equal } char *GenoOperators::strchrn0(const char *str, char ch) { return ch == 0 ? NULL : strchr((char *)str, ch); } bool GenoOperators::canStartNeuroClassName(const char firstchar) { return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; } double GenoOperators::calculateSolidVolume(Part * part) { double radiiProduct = part->scale.x * part->scale.y * part->scale.z; switch (part->shape) { case Part::Shape::SHAPE_CUBOID: return 8.0 * radiiProduct; case Part::Shape::SHAPE_CYLINDER: return 2.0 * M_PI * radiiProduct; case Part::Shape::SHAPE_ELLIPSOID: return (4.0 / 3.0) * M_PI * radiiProduct; default: logMessage("GenoOperators", "calculateSolidVolume", LOG_ERROR, "Unsupported part shape"); return -1; } }