source: cpp/frams/genetics/genooperators.cpp @ 1236

Last change on this file since 1236 was 1233, checked in by Maciej Komosinski, 19 months ago

Added a function that simplifies a sequence of modifier genes (useful in f1 and f4 encodings) by removing antagonistic modifier genes and limiting the number of genes of the same kind

  • Property svn:eol-style set to native
File size: 17.0 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2023  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5#include <ctype.h>  //isupper()
6#include "genooperators.h"
7#include <common/log.h>
8#include <common/nonstd_math.h>
9#include <frams/util/rndutil.h>
10#include <algorithm> // std::min, std::max
11
12//
13// custom distributions for mutations of various parameters
14//
15static double distrib_force[] =   // for '!'
16{
17        3,             // distribution 0 -__/ +1
18        0.001, 0.2,    // "slow" neurons
19        0.001, 1,
20        1, 1,          // "fast" neurons
21};
22static double distrib_inertia[] =  // for '='
23{
24        2,             // distribution 0 |..- +1
25        0, 0,          // "fast" neurons
26        0.7, 0.98,
27};
28static double distrib_sigmo[] =  // for '/'
29{
30        5,             // distribution -999 -..-^-..- +999
31        -999, -999,    //"perceptron"
32        999, 999,
33        -5, -1,        // nonlinear
34        1, 5,
35        -1, 1,         // ~linear
36};
37/*
38static double distrib_weight[] =
39{
405,                 // distribution -999 _-^_^-_ +999
41-999, 999,         // each weight value may be useful, especially...
42-5, -0.3,          // ...little non-zero values
43-3, -0.6,
440.6, 3,
450.3, 5,
46};
47*/
48
49int GenoOperators::roulette(const double *probtab, const int count)
50{
51        double sum = 0;
52        int i;
53        for (i = 0; i < count; i++) sum += probtab[i];
54        double sel = rndDouble(sum);
55        for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; }
56        return -1;
57}
58
59bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def)
60{
61        mn = mx = def = 0;
62        int defined = 0;
63        if (p->type(i)[0] == 'f')
64        {
65                double _mn = 0, _mx = 1, _def = 0.5;
66                defined = p->getMinMaxDouble(i, _mn, _mx, _def);
67                if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble...
68                if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble...
69                {
70                        _mn = _def - 500.0;
71                        _mx = _def + 500.0;
72                }
73                if (defined < 3) _def = (_mn + _mx) / 2.0;
74                mn = _mn; mx = _mx; def = _def;
75        }
76        if (p->type(i)[0] == 'd')
77        {
78                paInt _mn = 0, _mx = 1, _def = 0;
79                defined = p->getMinMaxInt(i, _mn, _mx, _def);
80                if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint...
81                if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint...
82                {
83                        _mn = _def - 500;
84                        _mx = _def + 500;
85                }
86                if (defined < 3) _def = (_mn + _mx) / 2;
87                mn = _mn; mx = _mx; def = _def;
88        }
89        return defined == 3;
90}
91
92bool GenoOperators::mutateRandomNeuroClassProperty(Neuro* n)
93{
94        bool mutated = false;
95        int prop = selectRandomNeuroClassProperty(n);
96        if (prop >= 0)
97        {
98                if (prop >= GenoOperators::NEUROCLASS_PROP_OFFSET)
99                {
100                        SyntParam par = n->classProperties();   //commits changes when this object is destroyed
101                        mutated = mutateProperty(par, prop - GenoOperators::NEUROCLASS_PROP_OFFSET);
102                }
103                else
104                {
105                        Param par = n->extraProperties();
106                        mutated = mutateProperty(par, prop);
107                }
108        }
109        return mutated;
110}
111
112int GenoOperators::selectRandomNeuroClassProperty(Neuro *n)
113{
114        int neuext = n->extraProperties().getPropCount(),
115                neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount();
116        if (neuext + neucls == 0) return -1; //no properties in this neuron
117        int index = rndUint(neuext + neucls);
118        if (index >= neuext) index = index - neuext + NEUROCLASS_PROP_OFFSET;
119        return index;
120}
121
122double GenoOperators::getMutatedNeuroClassProperty(double current, Neuro *n, int i)
123{
124        if (i == -1)
125        {
126                logPrintf("GenoOperators", "getMutatedNeuroClassProperty", LOG_WARN, "Deprecated usage in C++ source: to mutate connection weight, use getMutatedNeuronConnectionWeight().");
127                return getMutatedNeuronConnectionWeight(current);
128        }
129        Param p;
130        if (i >= NEUROCLASS_PROP_OFFSET) { i -= NEUROCLASS_PROP_OFFSET; p = n->getClass()->getProperties(); }
131        else p = n->extraProperties();
132        double newval = current;
133        /*bool ok=*/getMutatedProperty(p, i, current, newval);
134        return newval;
135}
136
137double GenoOperators::getMutatedNeuronConnectionWeight(double current)
138{
139        return mutateCreepNoLimit('f', current, 2, true);
140}
141
142bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i)
143{
144        double mn, mx, df;
145        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
146        getMinMaxDef(&p, i, mn, mx, df);
147
148        ExtValue ev;
149        p.get(i, ev);
150        ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true));
151        p.set(i, ev);
152        return true;
153}
154
155bool GenoOperators::mutateProperty(ParamInterface &p, int i)
156{
157        double newval;
158        ExtValue ev;
159        p.get(i, ev);
160        bool ok = getMutatedProperty(p, i, ev.getDouble(), newval);
161        if (ok) { ev.setDouble(newval); p.set(i, ev); }
162        return ok;
163}
164
165bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval)
166{
167        newval = 0;
168        if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate
169        const char *n = p.id(i), *na = p.name(i);
170        if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = round(CustomRnd(distrib_sigmo), 3); else
171                if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = round(CustomRnd(distrib_inertia), 3); else
172                        if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = round(CustomRnd(distrib_force), 3); else
173                        {
174                                double mn, mx, df;
175                                getMinMaxDef(&p, i, mn, mx, df);
176                                newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true);
177                        }
178        return true;
179}
180
181double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits)
182{
183        double result = RndGen.Gauss(current, stddev);
184        if (type == 'd')
185        {
186                result = int(result + 0.5);
187                if (result == current) result += rndUint(2) * 2 - 1; //force some change
188        }
189        else
190        {
191                if (limit_precision_3digits)
192                        result = round(result, 3);
193        }
194        return result;
195}
196
197double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits)
198{
199        double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits);
200        if (result<mn || result>mx) //exceeds boundary, so bring to the allowed range
201        {
202                //reflect:
203                if (result > mx) result = mx - (result - mx); else
204                        if (result < mn) result = mn + (mn - result);
205                //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary):
206                if (result > mx) result = mn + fmod(result - mx, mx - mn); else
207                        if (result < mn) result = mn + fmod(mn - result, mx - mn);
208                if (limit_precision_3digits)
209                {
210                        //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered)
211                        double result_try = round(result, 3);
212                        if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value
213                }
214        }
215        return result;
216}
217
218double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits)
219{
220        double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower
221        return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits);
222}
223
224void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO
225{
226        p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!)
227}
228
229void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion)
230{
231        if (p1.size() != p2.size())
232        {
233                logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size());
234                return;
235        }
236        for (unsigned int i = 0; i < p1.size(); i++)
237        {
238                double v1 = p1[i];
239                double v2 = p2[i];
240                p1[i] = v1 * proportion + v2 * (1 - proportion);
241                p2[i] = v2 * proportion + v1 * (1 - proportion);
242        }
243}
244
245void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion)
246{
247        char type1 = p1.type(i1)[0];
248        char type2 = p2.type(i2)[0];
249        if (type1 == 'f' && type2 == 'f')
250        {
251                double v1 = p1.getDouble(i1);
252                double v2 = p2.getDouble(i2);
253                p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion));
254                p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion));
255        }
256        else
257                if (type1 == 'd' && type2 == 'd')
258                {
259                        int v1 = p1.getInt(i1);
260                        int v2 = p2.getInt(i2);
261                        setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion));
262                        setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion));
263                }
264                else
265                        logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2);
266}
267
268int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type)
269{
270        int count = 0;
271        for (int i = 0; i < Neuro::getClassCount(); i++)
272        {
273                NeuroClass *nc = Neuro::getClass(i);
274                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive)
275                        count++;
276        }
277        return count;
278}
279
280NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type)
281{
282        vector<NeuroClass *> active;
283        for (int i = 0; i < Neuro::getClassCount(); i++)
284        {
285                NeuroClass *nc = Neuro::getClass(i);
286                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive)
287                        active.push_back(nc);
288        }
289        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
290}
291
292NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type)
293{
294        vector<NeuroClass *> active;
295        for (int i = 0; i < Neuro::getClassCount(); i++)
296        {
297                NeuroClass *nc = Neuro::getClass(i);
298                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0)
299                        active.push_back(nc);
300        }
301        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
302}
303
304NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type)
305{
306        vector<NeuroClass *> active;
307        for (int i = 0; i < Neuro::getClassCount(); i++)
308        {
309                NeuroClass *nc = Neuro::getClass(i);
310                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0)
311                        active.push_back(nc);
312        }
313        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
314}
315
316NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndWantingNoInputs(Model::ShapeType for_shape_type)
317{
318        vector<NeuroClass *> active;
319        for (int i = 0; i < Neuro::getClassCount(); i++)
320        {
321                NeuroClass *nc = Neuro::getClass(i);
322                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0)
323                        active.push_back(nc);
324        }
325        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
326}
327
328NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndWantingNoOrAnyInputs(Model::ShapeType for_shape_type)
329{
330        vector<NeuroClass *> active;
331        for (int i = 0; i < Neuro::getClassCount(); i++)
332        {
333                NeuroClass *nc = Neuro::getClass(i);
334                if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() <= 0) // getPreferredInputs() should be 0 or -1 (any)
335                        active.push_back(nc);
336        }
337        if (active.size() == 0) return NULL; else return active[rndUint(active.size())];
338}
339
340int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass *> &NClist)
341{
342        vector<int> allowed;
343        for (size_t i = 0; i < NClist.size(); i++)
344                if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output
345                        allowed.push_back(i);
346        if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())];
347}
348
349int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass *> &NClist)
350{
351        vector<int> allowed;
352        for (size_t i = 0; i < NClist.size(); i++)
353                if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more                 
354                        allowed.push_back(i);
355        if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())];
356}
357
358NeuroClass *GenoOperators::parseNeuroClass(char *&s, ModelEnum::ShapeType for_shape_type)
359{
360        int maxlen = (int)strlen(s);
361        int NClen = 0;
362        NeuroClass *NC = NULL;
363        for (int i = 0; i < Neuro::getClassCount(); i++)
364        {
365                NeuroClass *nci = Neuro::getClass(i);
366                if (!nci->isShapeTypeSupported(for_shape_type))
367                        continue;
368                const char *nciname = nci->name.c_str();
369                int ncinamelen = (int)strlen(nciname);
370                if (maxlen >= ncinamelen && ncinamelen > NClen && (strncmp(s, nciname, ncinamelen) == 0))
371                {
372                        NC = nci;
373                        NClen = ncinamelen;
374                }
375        }
376        s += NClen;
377        return NC;
378}
379
380Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc)
381{
382        if (!m) return NULL;
383        for (int i = 0; i < m->getNeuroCount(); i++)
384                if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i);
385        return NULL; //neuron of class 'nc' was not found
386}
387
388int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props)
389{
390        int len = (int)strlen(s);
391        int Len = 0, I = -1;
392        if (nc)
393        {
394                Param p = nc->getProperties();
395                for (int i = 0; i < p.getPropCount(); i++)
396                {
397                        const char *n = p.id(i);
398                        int l = (int)strlen(n);
399                        if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; }
400                        if (also_v1_N_props) //recognize old symbols of properties:  /=!
401                        {
402                                if (strcmp(n, "si") == 0) n = "/"; else
403                                        if (strcmp(n, "in") == 0) n = "="; else
404                                                if (strcmp(n, "fo") == 0) n = "!";
405                                l = (int)strlen(n);
406                                if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; }
407                        }
408                }
409        }
410        Neuro n;
411        Param p = n.extraProperties();
412        for (int i = 0; i < p.getPropCount(); i++)
413        {
414                const char *n = p.id(i);
415                int l = (int)strlen(n);
416                if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; }
417        }
418        s += Len;
419        return I;
420}
421
422bool GenoOperators::canStartNeuroClassName(const char firstchar)
423{
424        return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*';
425}
426
427bool GenoOperators::isWS(const char c)
428{
429        return c == ' ' || c == '\n' || c == '\t' || c == '\r';
430}
431
432void GenoOperators::skipWS(char *&s)
433{
434        if (s == NULL)
435                logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!");
436        else
437                while (isWS(*s)) s++;
438}
439
440bool GenoOperators::areAlike(char *g1, char *g2)
441{
442        while (*g1 || *g2)
443        {
444                skipWS(g1);
445                skipWS(g2);
446                if (*g1 != *g2) return false; //when difference
447                if (!*g1 && !*g2) break; //both end
448                g1++;
449                g2++;
450        }
451        return true; //equal
452}
453
454char *GenoOperators::strchrn0(const char *str, char ch)
455{
456        return ch == 0 ? NULL : strchr((char *)str, ch);
457}
458
459int GenoOperators::getRandomChar(const char *choices, const char *excluded)
460{
461        int allowed_count = 0;
462        for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++;
463        if (allowed_count == 0) return -1; //no char is allowed
464        int rnd_index = rndUint(allowed_count) + 1;
465        allowed_count = 0;
466        for (size_t i = 0; i < strlen(choices); i++)
467        {
468                if (!strchrn0(excluded, choices[i])) allowed_count++;
469                if (allowed_count == rnd_index) return int(i);
470        }
471        return -1; //never happens
472}
473
474//#include <cassert>
475string GenoOperators::simplifiedModifiers(const char *str_of_char_pairs, vector<int> &char_counts)
476{
477//      assert(strlen(str_of_char_pairs) == char_counts.size());
478//      assert(char_counts.size() % 2 == 0);
479        const int MAX_NUMBER_SAME_TYPE = 8; // max. number of modifiers of each type = 8 (mainly for Rr)
480        string simplified;
481        //#define CLUMP_IDENTICAL_MODIFIERS //not good because properties are calculated incrementally, non-linearly, and their values are updated after each modifier character, so these values may for example saturate after a large number of identical modifier symbols. The order of modifiers is in general relevant and extreme values of properties increase this relevance, so better keep the modifiers dispersed.
482#ifdef CLUMP_IDENTICAL_MODIFIERS
483        for (size_t i = 0; i < strlen(str_of_char_pairs); i++)
484                if ((i % 2) == 0) //only even index "i" in str_of_char_pairs
485                        for (int j = 0; j < std::min(MAX_NUMBER_SAME_TYPE, abs(char_counts[i] - char_counts[i + 1])); j++) //assume that an even-index char and the following odd-index char have the opposite influence, so they cancel out.
486                                simplified += str_of_char_pairs[i + (char_counts[i + 1] > char_counts[i])]; //inner loop adds a sequence of same chars such as rrrrr or QQQ
487#else
488        for (size_t i = 0; i < strlen(str_of_char_pairs); i++)
489                if ((i % 2) == 0) //only even index "i" in str_of_char_pairs
490                {
491                        char_counts[i] -= char_counts[i + 1]; //from now on, even items in the vector store the difference between antagonistic modifier symbols; odd items are not needed
492                        char_counts[i] = std::min(std::max(char_counts[i], -MAX_NUMBER_SAME_TYPE), MAX_NUMBER_SAME_TYPE);
493                }
494        int remaining;
495        do {
496                remaining = 0;
497                for (size_t i = 0; i < strlen(str_of_char_pairs); i++)
498                        if ((i % 2) == 0) //only even index "i" in str_of_char_pairs
499                                if (char_counts[i] != 0)
500                                {
501                                        simplified += str_of_char_pairs[i + (char_counts[i] < 0)];
502                                        char_counts[i] += char_counts[i] > 0 ? -1 : +1; //decrease the difference towards zero
503                                        remaining += abs(char_counts[i]);
504                                }
505        } while (remaining > 0);
506#endif
507        return simplified;
508}
Note: See TracBrowser for help on using the repository browser.