[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[935] | 2 | // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include <ctype.h> //isupper() |
---|
[779] | 6 | #include "genooperators.h" |
---|
[375] | 7 | #include <common/log.h> |
---|
[109] | 8 | #include <common/nonstd_math.h> |
---|
| 9 | #include <frams/util/rndutil.h> |
---|
| 10 | |
---|
[168] | 11 | static double distrib_force[] = // for '!' |
---|
[109] | 12 | { |
---|
[168] | 13 | 3, // distribution 0 -__/ +1 |
---|
| 14 | 0.001, 0.2, // "slow" neurons |
---|
| 15 | 0.001, 1, |
---|
| 16 | 1, 1, // "fast" neurons |
---|
[109] | 17 | }; |
---|
[168] | 18 | static double distrib_inertia[] = // for '=' |
---|
[109] | 19 | { |
---|
[168] | 20 | 2, // distribution 0 |..- +1 |
---|
| 21 | 0, 0, // "fast" neurons |
---|
| 22 | 0.7, 0.98, |
---|
[109] | 23 | }; |
---|
[168] | 24 | static double distrib_sigmo[] = // for '/' |
---|
[109] | 25 | { |
---|
[168] | 26 | 5, // distribution -999 -..-^-..- +999 |
---|
| 27 | -999, -999, //"perceptron" |
---|
| 28 | 999, 999, |
---|
| 29 | -5, -1, // nonlinear |
---|
| 30 | 1, 5, |
---|
| 31 | -1, 1, // ~linear |
---|
[109] | 32 | }; |
---|
| 33 | |
---|
| 34 | |
---|
[168] | 35 | int GenoOperators::roulette(const double *probtab, const int count) |
---|
[109] | 36 | { |
---|
[168] | 37 | double sum = 0; |
---|
| 38 | int i; |
---|
| 39 | for (i = 0; i < count; i++) sum += probtab[i]; |
---|
[896] | 40 | double sel = rndDouble(sum); |
---|
[168] | 41 | for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } |
---|
| 42 | return -1; |
---|
[109] | 43 | } |
---|
| 44 | |
---|
[168] | 45 | bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) |
---|
[109] | 46 | { |
---|
[168] | 47 | mn = mx = def = 0; |
---|
| 48 | int defined = 0; |
---|
| 49 | if (p->type(i)[0] == 'f') |
---|
| 50 | { |
---|
| 51 | double _mn = 0, _mx = 1, _def = 0.5; |
---|
[743] | 52 | defined = p->getMinMaxDouble(i, _mn, _mx, _def); |
---|
[765] | 53 | if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble... |
---|
| 54 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble... |
---|
| 55 | { |
---|
| 56 | _mn = _def - 500.0; |
---|
| 57 | _mx = _def + 500.0; |
---|
| 58 | } |
---|
[168] | 59 | if (defined < 3) _def = (_mn + _mx) / 2.0; |
---|
| 60 | mn = _mn; mx = _mx; def = _def; |
---|
| 61 | } |
---|
| 62 | if (p->type(i)[0] == 'd') |
---|
| 63 | { |
---|
[247] | 64 | paInt _mn = 0, _mx = 1, _def = 0; |
---|
[743] | 65 | defined = p->getMinMaxInt(i, _mn, _mx, _def); |
---|
[765] | 66 | if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint... |
---|
| 67 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint... |
---|
| 68 | { |
---|
| 69 | _mn = _def - 500; |
---|
| 70 | _mx = _def + 500; |
---|
| 71 | } |
---|
[168] | 72 | if (defined < 3) _def = (_mn + _mx) / 2; |
---|
| 73 | mn = _mn; mx = _mx; def = _def; |
---|
| 74 | } |
---|
| 75 | return defined == 3; |
---|
[109] | 76 | } |
---|
| 77 | |
---|
[899] | 78 | int GenoOperators::selectRandomProperty(Neuro *n) |
---|
[109] | 79 | { |
---|
[168] | 80 | int neuext = n->extraProperties().getPropCount(), |
---|
| 81 | neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); |
---|
| 82 | if (neuext + neucls == 0) return -1; //no properties in this neuron |
---|
[896] | 83 | int index = rndUint(neuext + neucls); |
---|
[168] | 84 | if (index >= neuext) index = index - neuext + 100; |
---|
| 85 | return index; |
---|
[109] | 86 | } |
---|
| 87 | |
---|
[168] | 88 | double GenoOperators::mutateNeuProperty(double current, Neuro *n, int i) |
---|
[109] | 89 | { |
---|
[751] | 90 | if (i == -1) return mutateCreepNoLimit('f', current, 2, true); //i==-1: mutating weight of neural connection |
---|
[168] | 91 | Param p; |
---|
| 92 | if (i >= 100) { i -= 100; p = n->getClass()->getProperties(); } |
---|
| 93 | else p = n->extraProperties(); |
---|
| 94 | double newval = current; |
---|
| 95 | /*bool ok=*/getMutatedProperty(p, i, current, newval); |
---|
| 96 | return newval; |
---|
[109] | 97 | } |
---|
| 98 | |
---|
[168] | 99 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) |
---|
[109] | 100 | { |
---|
[168] | 101 | double mn, mx, df; |
---|
| 102 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 103 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[109] | 104 | |
---|
[168] | 105 | ExtValue ev; |
---|
| 106 | p.get(i, ev); |
---|
[751] | 107 | ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true)); |
---|
[168] | 108 | p.set(i, ev); |
---|
| 109 | return true; |
---|
[109] | 110 | } |
---|
| 111 | |
---|
[168] | 112 | bool GenoOperators::mutateProperty(ParamInterface &p, int i) |
---|
[109] | 113 | { |
---|
[168] | 114 | double newval; |
---|
| 115 | ExtValue ev; |
---|
| 116 | p.get(i, ev); |
---|
| 117 | bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); |
---|
| 118 | if (ok) { ev.setDouble(newval); p.set(i, ev); } |
---|
| 119 | return ok; |
---|
[109] | 120 | } |
---|
| 121 | |
---|
[168] | 122 | bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) |
---|
[109] | 123 | { |
---|
[168] | 124 | newval = 0; |
---|
| 125 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 126 | const char *n = p.id(i), *na = p.name(i); |
---|
| 127 | if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = CustomRnd(distrib_sigmo); else |
---|
| 128 | if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = CustomRnd(distrib_inertia); else |
---|
| 129 | if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = CustomRnd(distrib_force); else |
---|
| 130 | { |
---|
[899] | 131 | double mn, mx, df; |
---|
| 132 | getMinMaxDef(&p, i, mn, mx, df); |
---|
| 133 | newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true); |
---|
[168] | 134 | } |
---|
| 135 | return true; |
---|
[109] | 136 | } |
---|
| 137 | |
---|
[751] | 138 | double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits) |
---|
[109] | 139 | { |
---|
[751] | 140 | double result = RndGen.Gauss(current, stddev); |
---|
| 141 | if (type == 'd') |
---|
| 142 | { |
---|
| 143 | result = int(result + 0.5); |
---|
[896] | 144 | if (result == current) result += rndUint(2) * 2 - 1; //force some change |
---|
[751] | 145 | } |
---|
| 146 | else |
---|
| 147 | { |
---|
| 148 | if (limit_precision_3digits) |
---|
| 149 | result = floor(result * 1000 + 0.5) / 1000.0; //round |
---|
| 150 | } |
---|
[168] | 151 | return result; |
---|
[109] | 152 | } |
---|
| 153 | |
---|
[751] | 154 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits) |
---|
[109] | 155 | { |
---|
[751] | 156 | double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits); |
---|
[764] | 157 | if (result<mn || result>mx) //exceeds boundary, so bring to the allowed range |
---|
| 158 | { |
---|
| 159 | //reflect: |
---|
| 160 | if (result > mx) result = mx - (result - mx); else |
---|
| 161 | if (result < mn) result = mn + (mn - result); |
---|
| 162 | //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary): |
---|
| 163 | if (result > mx) result = mn + fmod(result - mx, mx - mn); else |
---|
| 164 | if (result < mn) result = mn + fmod(mn - result, mx - mn); |
---|
| 165 | if (limit_precision_3digits) |
---|
| 166 | { |
---|
| 167 | //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered) |
---|
| 168 | double result_try = floor(result * 1000 + 0.5) / 1000.0; //round |
---|
| 169 | if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value |
---|
| 170 | } |
---|
| 171 | } |
---|
[146] | 172 | return result; |
---|
[109] | 173 | } |
---|
| 174 | |
---|
[751] | 175 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits) |
---|
| 176 | { |
---|
| 177 | double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower |
---|
| 178 | return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits); |
---|
| 179 | } |
---|
| 180 | |
---|
[146] | 181 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
| 182 | { |
---|
[749] | 183 | p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
[146] | 184 | } |
---|
| 185 | |
---|
[749] | 186 | void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion) |
---|
| 187 | { |
---|
| 188 | if (p1.size() != p2.size()) |
---|
| 189 | { |
---|
| 190 | logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size()); |
---|
| 191 | return; |
---|
| 192 | } |
---|
| 193 | for (unsigned int i = 0; i < p1.size(); i++) |
---|
| 194 | { |
---|
| 195 | double v1 = p1[i]; |
---|
| 196 | double v2 = p2[i]; |
---|
[899] | 197 | p1[i] = v1 * proportion + v2 * (1 - proportion); |
---|
| 198 | p2[i] = v2 * proportion + v1 * (1 - proportion); |
---|
[749] | 199 | } |
---|
| 200 | } |
---|
| 201 | |
---|
[146] | 202 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
| 203 | { |
---|
[158] | 204 | char type1 = p1.type(i1)[0]; |
---|
| 205 | char type2 = p2.type(i2)[0]; |
---|
| 206 | if (type1 == 'f' && type2 == 'f') |
---|
[146] | 207 | { |
---|
| 208 | double v1 = p1.getDouble(i1); |
---|
| 209 | double v2 = p2.getDouble(i2); |
---|
[899] | 210 | p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 211 | p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[146] | 212 | } |
---|
[158] | 213 | else |
---|
| 214 | if (type1 == 'd' && type2 == 'd') |
---|
| 215 | { |
---|
[899] | 216 | int v1 = p1.getInt(i1); |
---|
| 217 | int v2 = p2.getInt(i2); |
---|
| 218 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 219 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[158] | 220 | } |
---|
| 221 | else |
---|
[375] | 222 | logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); |
---|
[146] | 223 | } |
---|
| 224 | |
---|
[935] | 225 | int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type) |
---|
[801] | 226 | { |
---|
| 227 | int count = 0; |
---|
| 228 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 229 | { |
---|
| 230 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 231 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
[801] | 232 | count++; |
---|
[935] | 233 | } |
---|
[801] | 234 | return count; |
---|
| 235 | } |
---|
| 236 | |
---|
[935] | 237 | NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type) |
---|
[109] | 238 | { |
---|
[899] | 239 | vector<NeuroClass *> active; |
---|
[168] | 240 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 241 | { |
---|
| 242 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 243 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
| 244 | active.push_back(nc); |
---|
| 245 | } |
---|
[896] | 246 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[109] | 247 | } |
---|
| 248 | |
---|
[935] | 249 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type) |
---|
[758] | 250 | { |
---|
[899] | 251 | vector<NeuroClass *> active; |
---|
[758] | 252 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 253 | { |
---|
| 254 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 255 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0) |
---|
| 256 | active.push_back(nc); |
---|
| 257 | } |
---|
[896] | 258 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 259 | } |
---|
| 260 | |
---|
[935] | 261 | NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type) |
---|
[758] | 262 | { |
---|
[899] | 263 | vector<NeuroClass *> active; |
---|
[758] | 264 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 265 | { |
---|
| 266 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 267 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0) |
---|
| 268 | active.push_back(nc); |
---|
| 269 | } |
---|
[896] | 270 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 271 | } |
---|
| 272 | |
---|
[935] | 273 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndNoInputs(Model::ShapeType for_shape_type) |
---|
[758] | 274 | { |
---|
[899] | 275 | vector<NeuroClass *> active; |
---|
[758] | 276 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 277 | { |
---|
| 278 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 279 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0) |
---|
| 280 | active.push_back(nc); |
---|
| 281 | } |
---|
[896] | 282 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 283 | } |
---|
| 284 | |
---|
[899] | 285 | int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass *> &NClist) |
---|
[673] | 286 | { |
---|
| 287 | vector<int> allowed; |
---|
| 288 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 289 | if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output |
---|
| 290 | allowed.push_back(i); |
---|
[896] | 291 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 292 | } |
---|
| 293 | |
---|
[899] | 294 | int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass *> &NClist) |
---|
[673] | 295 | { |
---|
| 296 | vector<int> allowed; |
---|
| 297 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 298 | if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more |
---|
| 299 | allowed.push_back(i); |
---|
[896] | 300 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 301 | } |
---|
| 302 | |
---|
| 303 | int GenoOperators::getRandomChar(const char *choices, const char *excluded) |
---|
| 304 | { |
---|
| 305 | int allowed_count = 0; |
---|
| 306 | for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 307 | if (allowed_count == 0) return -1; //no char is allowed |
---|
[896] | 308 | int rnd_index = rndUint(allowed_count) + 1; |
---|
[673] | 309 | allowed_count = 0; |
---|
| 310 | for (size_t i = 0; i < strlen(choices); i++) |
---|
| 311 | { |
---|
| 312 | if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 313 | if (allowed_count == rnd_index) return i; |
---|
| 314 | } |
---|
| 315 | return -1; //never happens |
---|
| 316 | } |
---|
| 317 | |
---|
[899] | 318 | NeuroClass *GenoOperators::parseNeuroClass(char *&s) |
---|
[109] | 319 | { |
---|
[670] | 320 | int maxlen = (int)strlen(s); |
---|
| 321 | int NClen = 0; |
---|
| 322 | NeuroClass *NC = NULL; |
---|
[899] | 323 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[168] | 324 | { |
---|
[670] | 325 | const char *ncname = Neuro::getClass(i)->name.c_str(); |
---|
| 326 | int ncnamelen = (int)strlen(ncname); |
---|
[899] | 327 | if (maxlen >= ncnamelen && ncnamelen > NClen && (strncmp(s, ncname, ncnamelen) == 0)) |
---|
[670] | 328 | { |
---|
| 329 | NC = Neuro::getClass(i); |
---|
| 330 | NClen = ncnamelen; |
---|
| 331 | } |
---|
[168] | 332 | } |
---|
[670] | 333 | s += NClen; |
---|
| 334 | return NC; |
---|
[109] | 335 | } |
---|
| 336 | |
---|
[899] | 337 | Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) |
---|
[109] | 338 | { |
---|
[168] | 339 | if (!m) return NULL; |
---|
| 340 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 341 | if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); |
---|
| 342 | return NULL; //neuron of class 'nc' was not found |
---|
[109] | 343 | } |
---|
| 344 | |
---|
[899] | 345 | int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props) |
---|
[109] | 346 | { |
---|
[247] | 347 | int len = (int)strlen(s); |
---|
[168] | 348 | int Len = 0, I = -1; |
---|
| 349 | if (nc) |
---|
| 350 | { |
---|
| 351 | Param p = nc->getProperties(); |
---|
[899] | 352 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 353 | { |
---|
| 354 | const char *n = p.id(i); |
---|
[247] | 355 | int l = (int)strlen(n); |
---|
[899] | 356 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
[168] | 357 | if (also_v1_N_props) //recognize old properties symbols /=! |
---|
| 358 | { |
---|
| 359 | if (strcmp(n, "si") == 0) n = "/"; else |
---|
| 360 | if (strcmp(n, "in") == 0) n = "="; else |
---|
| 361 | if (strcmp(n, "fo") == 0) n = "!"; |
---|
[247] | 362 | l = (int)strlen(n); |
---|
[168] | 363 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = 100 + i; Len = l; } |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | } |
---|
| 367 | Neuro n; |
---|
| 368 | Param p = n.extraProperties(); |
---|
[899] | 369 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 370 | { |
---|
| 371 | const char *n = p.id(i); |
---|
[247] | 372 | int l = (int)strlen(n); |
---|
[899] | 373 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } |
---|
[168] | 374 | } |
---|
| 375 | s += Len; |
---|
| 376 | return I; |
---|
[109] | 377 | } |
---|
| 378 | |
---|
[121] | 379 | bool GenoOperators::isWS(const char c) |
---|
[168] | 380 | { |
---|
| 381 | return c == ' ' || c == '\n' || c == '\t' || c == '\r'; |
---|
| 382 | } |
---|
[109] | 383 | |
---|
[121] | 384 | void GenoOperators::skipWS(char *&s) |
---|
[158] | 385 | { |
---|
[168] | 386 | if (s == NULL) |
---|
[375] | 387 | logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!"); |
---|
[158] | 388 | else |
---|
[670] | 389 | while (isWS(*s)) s++; |
---|
[109] | 390 | } |
---|
| 391 | |
---|
[168] | 392 | bool GenoOperators::areAlike(char *g1, char *g2) |
---|
[109] | 393 | { |
---|
| 394 | while (*g1 || *g2) |
---|
| 395 | { |
---|
| 396 | skipWS(g1); |
---|
| 397 | skipWS(g2); |
---|
| 398 | if (*g1 != *g2) return false; //when difference |
---|
[168] | 399 | if (!*g1 && !*g2) break; //both end |
---|
| 400 | g1++; |
---|
| 401 | g2++; |
---|
[109] | 402 | } |
---|
| 403 | return true; //equal |
---|
| 404 | } |
---|
| 405 | |
---|
[899] | 406 | char *GenoOperators::strchrn0(const char *str, char ch) |
---|
[168] | 407 | { |
---|
[899] | 408 | return ch == 0 ? NULL : strchr((char *)str, ch); |
---|
[168] | 409 | } |
---|
[109] | 410 | |
---|
[758] | 411 | bool GenoOperators::canStartNeuroClassName(const char firstchar) |
---|
[109] | 412 | { |
---|
[168] | 413 | return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; |
---|
[109] | 414 | } |
---|