[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[1226] | 2 | // Copyright (C) 1999-2023 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include <ctype.h> //isupper() |
---|
[779] | 6 | #include "genooperators.h" |
---|
[375] | 7 | #include <common/log.h> |
---|
[109] | 8 | #include <common/nonstd_math.h> |
---|
| 9 | #include <frams/util/rndutil.h> |
---|
[1233] | 10 | #include <algorithm> // std::min, std::max |
---|
[109] | 11 | |
---|
[968] | 12 | // |
---|
| 13 | // custom distributions for mutations of various parameters |
---|
| 14 | // |
---|
[168] | 15 | static double distrib_force[] = // for '!' |
---|
[109] | 16 | { |
---|
[168] | 17 | 3, // distribution 0 -__/ +1 |
---|
| 18 | 0.001, 0.2, // "slow" neurons |
---|
| 19 | 0.001, 1, |
---|
| 20 | 1, 1, // "fast" neurons |
---|
[109] | 21 | }; |
---|
[168] | 22 | static double distrib_inertia[] = // for '=' |
---|
[109] | 23 | { |
---|
[168] | 24 | 2, // distribution 0 |..- +1 |
---|
| 25 | 0, 0, // "fast" neurons |
---|
| 26 | 0.7, 0.98, |
---|
[109] | 27 | }; |
---|
[168] | 28 | static double distrib_sigmo[] = // for '/' |
---|
[109] | 29 | { |
---|
[168] | 30 | 5, // distribution -999 -..-^-..- +999 |
---|
| 31 | -999, -999, //"perceptron" |
---|
| 32 | 999, 999, |
---|
| 33 | -5, -1, // nonlinear |
---|
| 34 | 1, 5, |
---|
| 35 | -1, 1, // ~linear |
---|
[109] | 36 | }; |
---|
[968] | 37 | /* |
---|
| 38 | static double distrib_weight[] = |
---|
| 39 | { |
---|
| 40 | 5, // distribution -999 _-^_^-_ +999 |
---|
| 41 | -999, 999, // each weight value may be useful, especially... |
---|
| 42 | -5, -0.3, // ...little non-zero values |
---|
| 43 | -3, -0.6, |
---|
| 44 | 0.6, 3, |
---|
| 45 | 0.3, 5, |
---|
| 46 | }; |
---|
| 47 | */ |
---|
[109] | 48 | |
---|
[168] | 49 | int GenoOperators::roulette(const double *probtab, const int count) |
---|
[109] | 50 | { |
---|
[168] | 51 | double sum = 0; |
---|
| 52 | int i; |
---|
| 53 | for (i = 0; i < count; i++) sum += probtab[i]; |
---|
[896] | 54 | double sel = rndDouble(sum); |
---|
[168] | 55 | for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } |
---|
| 56 | return -1; |
---|
[109] | 57 | } |
---|
| 58 | |
---|
[168] | 59 | bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) |
---|
[109] | 60 | { |
---|
[168] | 61 | mn = mx = def = 0; |
---|
| 62 | int defined = 0; |
---|
| 63 | if (p->type(i)[0] == 'f') |
---|
| 64 | { |
---|
| 65 | double _mn = 0, _mx = 1, _def = 0.5; |
---|
[743] | 66 | defined = p->getMinMaxDouble(i, _mn, _mx, _def); |
---|
[765] | 67 | if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble... |
---|
| 68 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble... |
---|
| 69 | { |
---|
| 70 | _mn = _def - 500.0; |
---|
| 71 | _mx = _def + 500.0; |
---|
| 72 | } |
---|
[168] | 73 | if (defined < 3) _def = (_mn + _mx) / 2.0; |
---|
| 74 | mn = _mn; mx = _mx; def = _def; |
---|
| 75 | } |
---|
| 76 | if (p->type(i)[0] == 'd') |
---|
| 77 | { |
---|
[247] | 78 | paInt _mn = 0, _mx = 1, _def = 0; |
---|
[743] | 79 | defined = p->getMinMaxInt(i, _mn, _mx, _def); |
---|
[765] | 80 | if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint... |
---|
| 81 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint... |
---|
| 82 | { |
---|
| 83 | _mn = _def - 500; |
---|
| 84 | _mx = _def + 500; |
---|
| 85 | } |
---|
[168] | 86 | if (defined < 3) _def = (_mn + _mx) / 2; |
---|
| 87 | mn = _mn; mx = _mx; def = _def; |
---|
| 88 | } |
---|
| 89 | return defined == 3; |
---|
[109] | 90 | } |
---|
| 91 | |
---|
[967] | 92 | bool GenoOperators::mutateRandomNeuroClassProperty(Neuro* n) |
---|
[959] | 93 | { |
---|
| 94 | bool mutated = false; |
---|
[967] | 95 | int prop = selectRandomNeuroClassProperty(n); |
---|
[959] | 96 | if (prop >= 0) |
---|
| 97 | { |
---|
| 98 | if (prop >= GenoOperators::NEUROCLASS_PROP_OFFSET) |
---|
| 99 | { |
---|
[967] | 100 | SyntParam par = n->classProperties(); //commits changes when this object is destroyed |
---|
[959] | 101 | mutated = mutateProperty(par, prop - GenoOperators::NEUROCLASS_PROP_OFFSET); |
---|
| 102 | } |
---|
| 103 | else |
---|
| 104 | { |
---|
| 105 | Param par = n->extraProperties(); |
---|
| 106 | mutated = mutateProperty(par, prop); |
---|
| 107 | } |
---|
| 108 | } |
---|
| 109 | return mutated; |
---|
| 110 | } |
---|
| 111 | |
---|
[967] | 112 | int GenoOperators::selectRandomNeuroClassProperty(Neuro *n) |
---|
[109] | 113 | { |
---|
[168] | 114 | int neuext = n->extraProperties().getPropCount(), |
---|
| 115 | neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); |
---|
| 116 | if (neuext + neucls == 0) return -1; //no properties in this neuron |
---|
[896] | 117 | int index = rndUint(neuext + neucls); |
---|
[957] | 118 | if (index >= neuext) index = index - neuext + NEUROCLASS_PROP_OFFSET; |
---|
[168] | 119 | return index; |
---|
[109] | 120 | } |
---|
| 121 | |
---|
[967] | 122 | double GenoOperators::getMutatedNeuroClassProperty(double current, Neuro *n, int i) |
---|
[109] | 123 | { |
---|
[968] | 124 | if (i == -1) |
---|
| 125 | { |
---|
| 126 | logPrintf("GenoOperators", "getMutatedNeuroClassProperty", LOG_WARN, "Deprecated usage in C++ source: to mutate connection weight, use getMutatedNeuronConnectionWeight()."); |
---|
| 127 | return getMutatedNeuronConnectionWeight(current); |
---|
| 128 | } |
---|
[168] | 129 | Param p; |
---|
[957] | 130 | if (i >= NEUROCLASS_PROP_OFFSET) { i -= NEUROCLASS_PROP_OFFSET; p = n->getClass()->getProperties(); } |
---|
[168] | 131 | else p = n->extraProperties(); |
---|
| 132 | double newval = current; |
---|
| 133 | /*bool ok=*/getMutatedProperty(p, i, current, newval); |
---|
| 134 | return newval; |
---|
[109] | 135 | } |
---|
| 136 | |
---|
[968] | 137 | double GenoOperators::getMutatedNeuronConnectionWeight(double current) |
---|
| 138 | { |
---|
| 139 | return mutateCreepNoLimit('f', current, 2, true); |
---|
| 140 | } |
---|
| 141 | |
---|
[168] | 142 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) |
---|
[109] | 143 | { |
---|
[168] | 144 | double mn, mx, df; |
---|
| 145 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 146 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[109] | 147 | |
---|
[168] | 148 | ExtValue ev; |
---|
| 149 | p.get(i, ev); |
---|
[751] | 150 | ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true)); |
---|
[168] | 151 | p.set(i, ev); |
---|
| 152 | return true; |
---|
[109] | 153 | } |
---|
| 154 | |
---|
[168] | 155 | bool GenoOperators::mutateProperty(ParamInterface &p, int i) |
---|
[109] | 156 | { |
---|
[168] | 157 | double newval; |
---|
| 158 | ExtValue ev; |
---|
| 159 | p.get(i, ev); |
---|
| 160 | bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); |
---|
| 161 | if (ok) { ev.setDouble(newval); p.set(i, ev); } |
---|
| 162 | return ok; |
---|
[109] | 163 | } |
---|
| 164 | |
---|
[168] | 165 | bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) |
---|
[109] | 166 | { |
---|
[168] | 167 | newval = 0; |
---|
| 168 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 169 | const char *n = p.id(i), *na = p.name(i); |
---|
[968] | 170 | if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = round(CustomRnd(distrib_sigmo), 3); else |
---|
| 171 | if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = round(CustomRnd(distrib_inertia), 3); else |
---|
| 172 | if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = round(CustomRnd(distrib_force), 3); else |
---|
[168] | 173 | { |
---|
[899] | 174 | double mn, mx, df; |
---|
| 175 | getMinMaxDef(&p, i, mn, mx, df); |
---|
| 176 | newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true); |
---|
[168] | 177 | } |
---|
| 178 | return true; |
---|
[109] | 179 | } |
---|
| 180 | |
---|
[751] | 181 | double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits) |
---|
[109] | 182 | { |
---|
[751] | 183 | double result = RndGen.Gauss(current, stddev); |
---|
| 184 | if (type == 'd') |
---|
| 185 | { |
---|
| 186 | result = int(result + 0.5); |
---|
[896] | 187 | if (result == current) result += rndUint(2) * 2 - 1; //force some change |
---|
[751] | 188 | } |
---|
| 189 | else |
---|
| 190 | { |
---|
| 191 | if (limit_precision_3digits) |
---|
[968] | 192 | result = round(result, 3); |
---|
[751] | 193 | } |
---|
[168] | 194 | return result; |
---|
[109] | 195 | } |
---|
| 196 | |
---|
[751] | 197 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits) |
---|
[109] | 198 | { |
---|
[751] | 199 | double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits); |
---|
[764] | 200 | if (result<mn || result>mx) //exceeds boundary, so bring to the allowed range |
---|
| 201 | { |
---|
| 202 | //reflect: |
---|
| 203 | if (result > mx) result = mx - (result - mx); else |
---|
| 204 | if (result < mn) result = mn + (mn - result); |
---|
| 205 | //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary): |
---|
| 206 | if (result > mx) result = mn + fmod(result - mx, mx - mn); else |
---|
| 207 | if (result < mn) result = mn + fmod(mn - result, mx - mn); |
---|
| 208 | if (limit_precision_3digits) |
---|
| 209 | { |
---|
| 210 | //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered) |
---|
[968] | 211 | double result_try = round(result, 3); |
---|
[764] | 212 | if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value |
---|
| 213 | } |
---|
| 214 | } |
---|
[146] | 215 | return result; |
---|
[109] | 216 | } |
---|
| 217 | |
---|
[751] | 218 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits) |
---|
| 219 | { |
---|
| 220 | double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower |
---|
| 221 | return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits); |
---|
| 222 | } |
---|
| 223 | |
---|
[146] | 224 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
| 225 | { |
---|
[749] | 226 | p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
[146] | 227 | } |
---|
| 228 | |
---|
[749] | 229 | void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion) |
---|
| 230 | { |
---|
| 231 | if (p1.size() != p2.size()) |
---|
| 232 | { |
---|
| 233 | logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size()); |
---|
| 234 | return; |
---|
| 235 | } |
---|
| 236 | for (unsigned int i = 0; i < p1.size(); i++) |
---|
| 237 | { |
---|
| 238 | double v1 = p1[i]; |
---|
| 239 | double v2 = p2[i]; |
---|
[899] | 240 | p1[i] = v1 * proportion + v2 * (1 - proportion); |
---|
| 241 | p2[i] = v2 * proportion + v1 * (1 - proportion); |
---|
[749] | 242 | } |
---|
| 243 | } |
---|
| 244 | |
---|
[146] | 245 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
| 246 | { |
---|
[158] | 247 | char type1 = p1.type(i1)[0]; |
---|
| 248 | char type2 = p2.type(i2)[0]; |
---|
| 249 | if (type1 == 'f' && type2 == 'f') |
---|
[146] | 250 | { |
---|
| 251 | double v1 = p1.getDouble(i1); |
---|
| 252 | double v2 = p2.getDouble(i2); |
---|
[899] | 253 | p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 254 | p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[146] | 255 | } |
---|
[158] | 256 | else |
---|
| 257 | if (type1 == 'd' && type2 == 'd') |
---|
| 258 | { |
---|
[899] | 259 | int v1 = p1.getInt(i1); |
---|
| 260 | int v2 = p2.getInt(i2); |
---|
| 261 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 262 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[158] | 263 | } |
---|
| 264 | else |
---|
[375] | 265 | logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); |
---|
[146] | 266 | } |
---|
| 267 | |
---|
[935] | 268 | int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type) |
---|
[801] | 269 | { |
---|
| 270 | int count = 0; |
---|
| 271 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 272 | { |
---|
| 273 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 274 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
[801] | 275 | count++; |
---|
[935] | 276 | } |
---|
[801] | 277 | return count; |
---|
| 278 | } |
---|
| 279 | |
---|
[935] | 280 | NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type) |
---|
[109] | 281 | { |
---|
[899] | 282 | vector<NeuroClass *> active; |
---|
[168] | 283 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 284 | { |
---|
| 285 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 286 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
| 287 | active.push_back(nc); |
---|
| 288 | } |
---|
[896] | 289 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[109] | 290 | } |
---|
| 291 | |
---|
[935] | 292 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type) |
---|
[758] | 293 | { |
---|
[899] | 294 | vector<NeuroClass *> active; |
---|
[758] | 295 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 296 | { |
---|
| 297 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 298 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0) |
---|
| 299 | active.push_back(nc); |
---|
| 300 | } |
---|
[896] | 301 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 302 | } |
---|
| 303 | |
---|
[935] | 304 | NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type) |
---|
[758] | 305 | { |
---|
[899] | 306 | vector<NeuroClass *> active; |
---|
[758] | 307 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 308 | { |
---|
| 309 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 310 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0) |
---|
| 311 | active.push_back(nc); |
---|
| 312 | } |
---|
[896] | 313 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 314 | } |
---|
| 315 | |
---|
[1226] | 316 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndWantingNoInputs(Model::ShapeType for_shape_type) |
---|
[758] | 317 | { |
---|
[899] | 318 | vector<NeuroClass *> active; |
---|
[758] | 319 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 320 | { |
---|
| 321 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 322 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0) |
---|
| 323 | active.push_back(nc); |
---|
| 324 | } |
---|
[896] | 325 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 326 | } |
---|
| 327 | |
---|
[1226] | 328 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndWantingNoOrAnyInputs(Model::ShapeType for_shape_type) |
---|
| 329 | { |
---|
| 330 | vector<NeuroClass *> active; |
---|
| 331 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
| 332 | { |
---|
| 333 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 334 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() <= 0) // getPreferredInputs() should be 0 or -1 (any) |
---|
| 335 | active.push_back(nc); |
---|
| 336 | } |
---|
| 337 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
| 338 | } |
---|
| 339 | |
---|
[899] | 340 | int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass *> &NClist) |
---|
[673] | 341 | { |
---|
| 342 | vector<int> allowed; |
---|
| 343 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 344 | if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output |
---|
| 345 | allowed.push_back(i); |
---|
[896] | 346 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 347 | } |
---|
| 348 | |
---|
[899] | 349 | int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass *> &NClist) |
---|
[673] | 350 | { |
---|
| 351 | vector<int> allowed; |
---|
| 352 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 353 | if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more |
---|
| 354 | allowed.push_back(i); |
---|
[896] | 355 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 356 | } |
---|
| 357 | |
---|
[1233] | 358 | NeuroClass *GenoOperators::parseNeuroClass(char *&s, ModelEnum::ShapeType for_shape_type) |
---|
[673] | 359 | { |
---|
[670] | 360 | int maxlen = (int)strlen(s); |
---|
| 361 | int NClen = 0; |
---|
| 362 | NeuroClass *NC = NULL; |
---|
[899] | 363 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[168] | 364 | { |
---|
[1226] | 365 | NeuroClass *nci = Neuro::getClass(i); |
---|
[1233] | 366 | if (!nci->isShapeTypeSupported(for_shape_type)) |
---|
[1226] | 367 | continue; |
---|
| 368 | const char *nciname = nci->name.c_str(); |
---|
| 369 | int ncinamelen = (int)strlen(nciname); |
---|
| 370 | if (maxlen >= ncinamelen && ncinamelen > NClen && (strncmp(s, nciname, ncinamelen) == 0)) |
---|
[670] | 371 | { |
---|
[1226] | 372 | NC = nci; |
---|
| 373 | NClen = ncinamelen; |
---|
[670] | 374 | } |
---|
[168] | 375 | } |
---|
[670] | 376 | s += NClen; |
---|
| 377 | return NC; |
---|
[109] | 378 | } |
---|
| 379 | |
---|
[899] | 380 | Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) |
---|
[109] | 381 | { |
---|
[168] | 382 | if (!m) return NULL; |
---|
| 383 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 384 | if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); |
---|
| 385 | return NULL; //neuron of class 'nc' was not found |
---|
[109] | 386 | } |
---|
| 387 | |
---|
[899] | 388 | int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props) |
---|
[109] | 389 | { |
---|
[247] | 390 | int len = (int)strlen(s); |
---|
[168] | 391 | int Len = 0, I = -1; |
---|
| 392 | if (nc) |
---|
| 393 | { |
---|
| 394 | Param p = nc->getProperties(); |
---|
[899] | 395 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 396 | { |
---|
| 397 | const char *n = p.id(i); |
---|
[247] | 398 | int l = (int)strlen(n); |
---|
[957] | 399 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } |
---|
[968] | 400 | if (also_v1_N_props) //recognize old symbols of properties: /=! |
---|
[168] | 401 | { |
---|
| 402 | if (strcmp(n, "si") == 0) n = "/"; else |
---|
| 403 | if (strcmp(n, "in") == 0) n = "="; else |
---|
| 404 | if (strcmp(n, "fo") == 0) n = "!"; |
---|
[247] | 405 | l = (int)strlen(n); |
---|
[957] | 406 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } |
---|
[168] | 407 | } |
---|
| 408 | } |
---|
| 409 | } |
---|
| 410 | Neuro n; |
---|
| 411 | Param p = n.extraProperties(); |
---|
[899] | 412 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 413 | { |
---|
| 414 | const char *n = p.id(i); |
---|
[247] | 415 | int l = (int)strlen(n); |
---|
[899] | 416 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } |
---|
[168] | 417 | } |
---|
| 418 | s += Len; |
---|
| 419 | return I; |
---|
[109] | 420 | } |
---|
| 421 | |
---|
[1233] | 422 | bool GenoOperators::canStartNeuroClassName(const char firstchar) |
---|
| 423 | { |
---|
| 424 | return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; |
---|
| 425 | } |
---|
| 426 | |
---|
[121] | 427 | bool GenoOperators::isWS(const char c) |
---|
[168] | 428 | { |
---|
| 429 | return c == ' ' || c == '\n' || c == '\t' || c == '\r'; |
---|
| 430 | } |
---|
[109] | 431 | |
---|
[121] | 432 | void GenoOperators::skipWS(char *&s) |
---|
[158] | 433 | { |
---|
[168] | 434 | if (s == NULL) |
---|
[375] | 435 | logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!"); |
---|
[158] | 436 | else |
---|
[670] | 437 | while (isWS(*s)) s++; |
---|
[109] | 438 | } |
---|
| 439 | |
---|
[168] | 440 | bool GenoOperators::areAlike(char *g1, char *g2) |
---|
[109] | 441 | { |
---|
| 442 | while (*g1 || *g2) |
---|
| 443 | { |
---|
| 444 | skipWS(g1); |
---|
| 445 | skipWS(g2); |
---|
| 446 | if (*g1 != *g2) return false; //when difference |
---|
[168] | 447 | if (!*g1 && !*g2) break; //both end |
---|
| 448 | g1++; |
---|
| 449 | g2++; |
---|
[109] | 450 | } |
---|
| 451 | return true; //equal |
---|
| 452 | } |
---|
| 453 | |
---|
[899] | 454 | char *GenoOperators::strchrn0(const char *str, char ch) |
---|
[168] | 455 | { |
---|
[899] | 456 | return ch == 0 ? NULL : strchr((char *)str, ch); |
---|
[168] | 457 | } |
---|
[109] | 458 | |
---|
[1233] | 459 | int GenoOperators::getRandomChar(const char *choices, const char *excluded) |
---|
[109] | 460 | { |
---|
[1233] | 461 | int allowed_count = 0; |
---|
| 462 | for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 463 | if (allowed_count == 0) return -1; //no char is allowed |
---|
| 464 | int rnd_index = rndUint(allowed_count) + 1; |
---|
| 465 | allowed_count = 0; |
---|
| 466 | for (size_t i = 0; i < strlen(choices); i++) |
---|
| 467 | { |
---|
| 468 | if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 469 | if (allowed_count == rnd_index) return int(i); |
---|
| 470 | } |
---|
| 471 | return -1; //never happens |
---|
[109] | 472 | } |
---|
[1233] | 473 | |
---|
| 474 | //#include <cassert> |
---|
| 475 | string GenoOperators::simplifiedModifiers(const char *str_of_char_pairs, vector<int> &char_counts) |
---|
| 476 | { |
---|
| 477 | // assert(strlen(str_of_char_pairs) == char_counts.size()); |
---|
| 478 | // assert(char_counts.size() % 2 == 0); |
---|
| 479 | const int MAX_NUMBER_SAME_TYPE = 8; // max. number of modifiers of each type = 8 (mainly for Rr) |
---|
| 480 | string simplified; |
---|
| 481 | //#define CLUMP_IDENTICAL_MODIFIERS //not good because properties are calculated incrementally, non-linearly, and their values are updated after each modifier character, so these values may for example saturate after a large number of identical modifier symbols. The order of modifiers is in general relevant and extreme values of properties increase this relevance, so better keep the modifiers dispersed. |
---|
| 482 | #ifdef CLUMP_IDENTICAL_MODIFIERS |
---|
| 483 | for (size_t i = 0; i < strlen(str_of_char_pairs); i++) |
---|
| 484 | if ((i % 2) == 0) //only even index "i" in str_of_char_pairs |
---|
| 485 | for (int j = 0; j < std::min(MAX_NUMBER_SAME_TYPE, abs(char_counts[i] - char_counts[i + 1])); j++) //assume that an even-index char and the following odd-index char have the opposite influence, so they cancel out. |
---|
| 486 | simplified += str_of_char_pairs[i + (char_counts[i + 1] > char_counts[i])]; //inner loop adds a sequence of same chars such as rrrrr or QQQ |
---|
| 487 | #else |
---|
| 488 | for (size_t i = 0; i < strlen(str_of_char_pairs); i++) |
---|
| 489 | if ((i % 2) == 0) //only even index "i" in str_of_char_pairs |
---|
| 490 | { |
---|
| 491 | char_counts[i] -= char_counts[i + 1]; //from now on, even items in the vector store the difference between antagonistic modifier symbols; odd items are not needed |
---|
| 492 | char_counts[i] = std::min(std::max(char_counts[i], -MAX_NUMBER_SAME_TYPE), MAX_NUMBER_SAME_TYPE); |
---|
| 493 | } |
---|
| 494 | int remaining; |
---|
| 495 | do { |
---|
| 496 | remaining = 0; |
---|
| 497 | for (size_t i = 0; i < strlen(str_of_char_pairs); i++) |
---|
| 498 | if ((i % 2) == 0) //only even index "i" in str_of_char_pairs |
---|
| 499 | if (char_counts[i] != 0) |
---|
| 500 | { |
---|
| 501 | simplified += str_of_char_pairs[i + (char_counts[i] < 0)]; |
---|
| 502 | char_counts[i] += char_counts[i] > 0 ? -1 : +1; //decrease the difference towards zero |
---|
| 503 | remaining += abs(char_counts[i]); |
---|
| 504 | } |
---|
| 505 | } while (remaining > 0); |
---|
| 506 | #endif |
---|
| 507 | return simplified; |
---|
| 508 | } |
---|