[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[935] | 2 | // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include <ctype.h> //isupper() |
---|
[779] | 6 | #include "genooperators.h" |
---|
[375] | 7 | #include <common/log.h> |
---|
[109] | 8 | #include <common/nonstd_math.h> |
---|
| 9 | #include <frams/util/rndutil.h> |
---|
| 10 | |
---|
[968] | 11 | // |
---|
| 12 | // custom distributions for mutations of various parameters |
---|
| 13 | // |
---|
[168] | 14 | static double distrib_force[] = // for '!' |
---|
[109] | 15 | { |
---|
[168] | 16 | 3, // distribution 0 -__/ +1 |
---|
| 17 | 0.001, 0.2, // "slow" neurons |
---|
| 18 | 0.001, 1, |
---|
| 19 | 1, 1, // "fast" neurons |
---|
[109] | 20 | }; |
---|
[168] | 21 | static double distrib_inertia[] = // for '=' |
---|
[109] | 22 | { |
---|
[168] | 23 | 2, // distribution 0 |..- +1 |
---|
| 24 | 0, 0, // "fast" neurons |
---|
| 25 | 0.7, 0.98, |
---|
[109] | 26 | }; |
---|
[168] | 27 | static double distrib_sigmo[] = // for '/' |
---|
[109] | 28 | { |
---|
[168] | 29 | 5, // distribution -999 -..-^-..- +999 |
---|
| 30 | -999, -999, //"perceptron" |
---|
| 31 | 999, 999, |
---|
| 32 | -5, -1, // nonlinear |
---|
| 33 | 1, 5, |
---|
| 34 | -1, 1, // ~linear |
---|
[109] | 35 | }; |
---|
[968] | 36 | /* |
---|
| 37 | static double distrib_weight[] = |
---|
| 38 | { |
---|
| 39 | 5, // distribution -999 _-^_^-_ +999 |
---|
| 40 | -999, 999, // each weight value may be useful, especially... |
---|
| 41 | -5, -0.3, // ...little non-zero values |
---|
| 42 | -3, -0.6, |
---|
| 43 | 0.6, 3, |
---|
| 44 | 0.3, 5, |
---|
| 45 | }; |
---|
| 46 | */ |
---|
[109] | 47 | |
---|
[168] | 48 | int GenoOperators::roulette(const double *probtab, const int count) |
---|
[109] | 49 | { |
---|
[168] | 50 | double sum = 0; |
---|
| 51 | int i; |
---|
| 52 | for (i = 0; i < count; i++) sum += probtab[i]; |
---|
[896] | 53 | double sel = rndDouble(sum); |
---|
[168] | 54 | for (sum = 0, i = 0; i < count; i++) { sum += probtab[i]; if (sel < sum) return i; } |
---|
| 55 | return -1; |
---|
[109] | 56 | } |
---|
| 57 | |
---|
[168] | 58 | bool GenoOperators::getMinMaxDef(ParamInterface *p, int i, double &mn, double &mx, double &def) |
---|
[109] | 59 | { |
---|
[168] | 60 | mn = mx = def = 0; |
---|
| 61 | int defined = 0; |
---|
| 62 | if (p->type(i)[0] == 'f') |
---|
| 63 | { |
---|
| 64 | double _mn = 0, _mx = 1, _def = 0.5; |
---|
[743] | 65 | defined = p->getMinMaxDouble(i, _mn, _mx, _def); |
---|
[765] | 66 | if (defined == 1) _mx = _mn + 1000.0; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxdouble... |
---|
| 67 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxdouble... |
---|
| 68 | { |
---|
| 69 | _mn = _def - 500.0; |
---|
| 70 | _mx = _def + 500.0; |
---|
| 71 | } |
---|
[168] | 72 | if (defined < 3) _def = (_mn + _mx) / 2.0; |
---|
| 73 | mn = _mn; mx = _mx; def = _def; |
---|
| 74 | } |
---|
| 75 | if (p->type(i)[0] == 'd') |
---|
| 76 | { |
---|
[247] | 77 | paInt _mn = 0, _mx = 1, _def = 0; |
---|
[743] | 78 | defined = p->getMinMaxInt(i, _mn, _mx, _def); |
---|
[765] | 79 | if (defined == 1) _mx = _mn + 1000; //only min was defined, so let's set some arbitrary range, just to have some freedom. Assumes _mn is not close to maxint... |
---|
| 80 | if (_mx < _mn && defined == 3) //only default was defined, so let's assume some arbitrary range. Again, no check for min/maxint... |
---|
| 81 | { |
---|
| 82 | _mn = _def - 500; |
---|
| 83 | _mx = _def + 500; |
---|
| 84 | } |
---|
[168] | 85 | if (defined < 3) _def = (_mn + _mx) / 2; |
---|
| 86 | mn = _mn; mx = _mx; def = _def; |
---|
| 87 | } |
---|
| 88 | return defined == 3; |
---|
[109] | 89 | } |
---|
| 90 | |
---|
[967] | 91 | bool GenoOperators::mutateRandomNeuroClassProperty(Neuro* n) |
---|
[959] | 92 | { |
---|
| 93 | bool mutated = false; |
---|
[967] | 94 | int prop = selectRandomNeuroClassProperty(n); |
---|
[959] | 95 | if (prop >= 0) |
---|
| 96 | { |
---|
| 97 | if (prop >= GenoOperators::NEUROCLASS_PROP_OFFSET) |
---|
| 98 | { |
---|
[967] | 99 | SyntParam par = n->classProperties(); //commits changes when this object is destroyed |
---|
[959] | 100 | mutated = mutateProperty(par, prop - GenoOperators::NEUROCLASS_PROP_OFFSET); |
---|
| 101 | } |
---|
| 102 | else |
---|
| 103 | { |
---|
| 104 | Param par = n->extraProperties(); |
---|
| 105 | mutated = mutateProperty(par, prop); |
---|
| 106 | } |
---|
| 107 | } |
---|
| 108 | return mutated; |
---|
| 109 | } |
---|
| 110 | |
---|
[967] | 111 | int GenoOperators::selectRandomNeuroClassProperty(Neuro *n) |
---|
[109] | 112 | { |
---|
[168] | 113 | int neuext = n->extraProperties().getPropCount(), |
---|
| 114 | neucls = n->getClass() == NULL ? 0 : n->getClass()->getProperties().getPropCount(); |
---|
| 115 | if (neuext + neucls == 0) return -1; //no properties in this neuron |
---|
[896] | 116 | int index = rndUint(neuext + neucls); |
---|
[957] | 117 | if (index >= neuext) index = index - neuext + NEUROCLASS_PROP_OFFSET; |
---|
[168] | 118 | return index; |
---|
[109] | 119 | } |
---|
| 120 | |
---|
[967] | 121 | double GenoOperators::getMutatedNeuroClassProperty(double current, Neuro *n, int i) |
---|
[109] | 122 | { |
---|
[968] | 123 | if (i == -1) |
---|
| 124 | { |
---|
| 125 | logPrintf("GenoOperators", "getMutatedNeuroClassProperty", LOG_WARN, "Deprecated usage in C++ source: to mutate connection weight, use getMutatedNeuronConnectionWeight()."); |
---|
| 126 | return getMutatedNeuronConnectionWeight(current); |
---|
| 127 | } |
---|
[168] | 128 | Param p; |
---|
[957] | 129 | if (i >= NEUROCLASS_PROP_OFFSET) { i -= NEUROCLASS_PROP_OFFSET; p = n->getClass()->getProperties(); } |
---|
[168] | 130 | else p = n->extraProperties(); |
---|
| 131 | double newval = current; |
---|
| 132 | /*bool ok=*/getMutatedProperty(p, i, current, newval); |
---|
| 133 | return newval; |
---|
[109] | 134 | } |
---|
| 135 | |
---|
[968] | 136 | double GenoOperators::getMutatedNeuronConnectionWeight(double current) |
---|
| 137 | { |
---|
| 138 | return mutateCreepNoLimit('f', current, 2, true); |
---|
| 139 | } |
---|
| 140 | |
---|
[168] | 141 | bool GenoOperators::mutatePropertyNaive(ParamInterface &p, int i) |
---|
[109] | 142 | { |
---|
[168] | 143 | double mn, mx, df; |
---|
| 144 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 145 | getMinMaxDef(&p, i, mn, mx, df); |
---|
[109] | 146 | |
---|
[168] | 147 | ExtValue ev; |
---|
| 148 | p.get(i, ev); |
---|
[751] | 149 | ev.setDouble(mutateCreep(p.type(i)[0], ev.getDouble(), mn, mx, true)); |
---|
[168] | 150 | p.set(i, ev); |
---|
| 151 | return true; |
---|
[109] | 152 | } |
---|
| 153 | |
---|
[168] | 154 | bool GenoOperators::mutateProperty(ParamInterface &p, int i) |
---|
[109] | 155 | { |
---|
[168] | 156 | double newval; |
---|
| 157 | ExtValue ev; |
---|
| 158 | p.get(i, ev); |
---|
| 159 | bool ok = getMutatedProperty(p, i, ev.getDouble(), newval); |
---|
| 160 | if (ok) { ev.setDouble(newval); p.set(i, ev); } |
---|
| 161 | return ok; |
---|
[109] | 162 | } |
---|
| 163 | |
---|
[168] | 164 | bool GenoOperators::getMutatedProperty(ParamInterface &p, int i, double oldval, double &newval) |
---|
[109] | 165 | { |
---|
[168] | 166 | newval = 0; |
---|
| 167 | if (p.type(i)[0] != 'f' && p.type(i)[0] != 'd') return false; //don't know how to mutate |
---|
| 168 | const char *n = p.id(i), *na = p.name(i); |
---|
[968] | 169 | if (strcmp(n, "si") == 0 && strcmp(na, "Sigmoid") == 0) newval = round(CustomRnd(distrib_sigmo), 3); else |
---|
| 170 | if (strcmp(n, "in") == 0 && strcmp(na, "Inertia") == 0) newval = round(CustomRnd(distrib_inertia), 3); else |
---|
| 171 | if (strcmp(n, "fo") == 0 && strcmp(na, "Force") == 0) newval = round(CustomRnd(distrib_force), 3); else |
---|
[168] | 172 | { |
---|
[899] | 173 | double mn, mx, df; |
---|
| 174 | getMinMaxDef(&p, i, mn, mx, df); |
---|
| 175 | newval = mutateCreep(p.type(i)[0], oldval, mn, mx, true); |
---|
[168] | 176 | } |
---|
| 177 | return true; |
---|
[109] | 178 | } |
---|
| 179 | |
---|
[751] | 180 | double GenoOperators::mutateCreepNoLimit(char type, double current, double stddev, bool limit_precision_3digits) |
---|
[109] | 181 | { |
---|
[751] | 182 | double result = RndGen.Gauss(current, stddev); |
---|
| 183 | if (type == 'd') |
---|
| 184 | { |
---|
| 185 | result = int(result + 0.5); |
---|
[896] | 186 | if (result == current) result += rndUint(2) * 2 - 1; //force some change |
---|
[751] | 187 | } |
---|
| 188 | else |
---|
| 189 | { |
---|
| 190 | if (limit_precision_3digits) |
---|
[968] | 191 | result = round(result, 3); |
---|
[751] | 192 | } |
---|
[168] | 193 | return result; |
---|
[109] | 194 | } |
---|
| 195 | |
---|
[751] | 196 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, double stddev, bool limit_precision_3digits) |
---|
[109] | 197 | { |
---|
[751] | 198 | double result = mutateCreepNoLimit(type, current, stddev, limit_precision_3digits); |
---|
[764] | 199 | if (result<mn || result>mx) //exceeds boundary, so bring to the allowed range |
---|
| 200 | { |
---|
| 201 | //reflect: |
---|
| 202 | if (result > mx) result = mx - (result - mx); else |
---|
| 203 | if (result < mn) result = mn + (mn - result); |
---|
| 204 | //wrap (just in case 'result' exceeded the allowed range so much that after reflection above it exceeded the other boundary): |
---|
| 205 | if (result > mx) result = mn + fmod(result - mx, mx - mn); else |
---|
| 206 | if (result < mn) result = mn + fmod(mn - result, mx - mn); |
---|
| 207 | if (limit_precision_3digits) |
---|
| 208 | { |
---|
| 209 | //reflect and wrap above may have changed the (limited) precision, so try to round again (maybe unnecessarily, because we don't know if reflect+wrap above were triggered) |
---|
[968] | 210 | double result_try = round(result, 3); |
---|
[764] | 211 | if (mn <= result_try && result_try <= mx) result = result_try; //after rounding still witin allowed range, so keep rounded value |
---|
| 212 | } |
---|
| 213 | } |
---|
[146] | 214 | return result; |
---|
[109] | 215 | } |
---|
| 216 | |
---|
[751] | 217 | double GenoOperators::mutateCreep(char type, double current, double mn, double mx, bool limit_precision_3digits) |
---|
| 218 | { |
---|
| 219 | double stddev = (mx - mn) / 2 / 5; // magic arbitrary formula for stddev, which becomes /halfinterval, 5 times narrower |
---|
| 220 | return mutateCreep(type, current, mn, mx, stddev, limit_precision_3digits); |
---|
| 221 | } |
---|
| 222 | |
---|
[146] | 223 | void GenoOperators::setIntFromDoubleWithProbabilisticDithering(ParamInterface &p, int index, double value) //TODO |
---|
| 224 | { |
---|
[749] | 225 | p.setInt(index, (paInt)(value + 0.5)); //TODO value=2.499 will result in 2 and 2.5 will result in 3, but we want these cases to be 2 or 3 with almost equal probability. value=2.1 should be mostly 2, rarely 3. Careful with negative values (test it!) |
---|
[146] | 226 | } |
---|
| 227 | |
---|
[749] | 228 | void GenoOperators::linearMix(vector<double> &p1, vector<double> &p2, double proportion) |
---|
| 229 | { |
---|
| 230 | if (p1.size() != p2.size()) |
---|
| 231 | { |
---|
| 232 | logPrintf("GenoOperators", "linearMix", LOG_ERROR, "Cannot mix vectors of different length (%d and %d)", p1.size(), p2.size()); |
---|
| 233 | return; |
---|
| 234 | } |
---|
| 235 | for (unsigned int i = 0; i < p1.size(); i++) |
---|
| 236 | { |
---|
| 237 | double v1 = p1[i]; |
---|
| 238 | double v2 = p2[i]; |
---|
[899] | 239 | p1[i] = v1 * proportion + v2 * (1 - proportion); |
---|
| 240 | p2[i] = v2 * proportion + v1 * (1 - proportion); |
---|
[749] | 241 | } |
---|
| 242 | } |
---|
| 243 | |
---|
[146] | 244 | void GenoOperators::linearMix(ParamInterface &p1, int i1, ParamInterface &p2, int i2, double proportion) |
---|
| 245 | { |
---|
[158] | 246 | char type1 = p1.type(i1)[0]; |
---|
| 247 | char type2 = p2.type(i2)[0]; |
---|
| 248 | if (type1 == 'f' && type2 == 'f') |
---|
[146] | 249 | { |
---|
| 250 | double v1 = p1.getDouble(i1); |
---|
| 251 | double v2 = p2.getDouble(i2); |
---|
[899] | 252 | p1.setDouble(i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 253 | p2.setDouble(i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[146] | 254 | } |
---|
[158] | 255 | else |
---|
| 256 | if (type1 == 'd' && type2 == 'd') |
---|
| 257 | { |
---|
[899] | 258 | int v1 = p1.getInt(i1); |
---|
| 259 | int v2 = p2.getInt(i2); |
---|
| 260 | setIntFromDoubleWithProbabilisticDithering(p1, i1, v1 * proportion + v2 * (1 - proportion)); |
---|
| 261 | setIntFromDoubleWithProbabilisticDithering(p2, i2, v2 * proportion + v1 * (1 - proportion)); |
---|
[158] | 262 | } |
---|
| 263 | else |
---|
[375] | 264 | logPrintf("GenoOperators", "linearMix", LOG_WARN, "Cannot mix values of types '%c' and '%c'", type1, type2); |
---|
[146] | 265 | } |
---|
| 266 | |
---|
[935] | 267 | int GenoOperators::getActiveNeuroClassCount(Model::ShapeType for_shape_type) |
---|
[801] | 268 | { |
---|
| 269 | int count = 0; |
---|
| 270 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 271 | { |
---|
| 272 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 273 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
[801] | 274 | count++; |
---|
[935] | 275 | } |
---|
[801] | 276 | return count; |
---|
| 277 | } |
---|
| 278 | |
---|
[935] | 279 | NeuroClass *GenoOperators::getRandomNeuroClass(Model::ShapeType for_shape_type) |
---|
[109] | 280 | { |
---|
[899] | 281 | vector<NeuroClass *> active; |
---|
[168] | 282 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 283 | { |
---|
| 284 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 285 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive) |
---|
| 286 | active.push_back(nc); |
---|
| 287 | } |
---|
[896] | 288 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[109] | 289 | } |
---|
| 290 | |
---|
[935] | 291 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutput(Model::ShapeType for_shape_type) |
---|
[758] | 292 | { |
---|
[899] | 293 | vector<NeuroClass *> active; |
---|
[758] | 294 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 295 | { |
---|
| 296 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 297 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0) |
---|
| 298 | active.push_back(nc); |
---|
| 299 | } |
---|
[896] | 300 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 301 | } |
---|
| 302 | |
---|
[935] | 303 | NeuroClass *GenoOperators::getRandomNeuroClassWithInput(Model::ShapeType for_shape_type) |
---|
[758] | 304 | { |
---|
[899] | 305 | vector<NeuroClass *> active; |
---|
[758] | 306 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 307 | { |
---|
| 308 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 309 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredInputs() != 0) |
---|
| 310 | active.push_back(nc); |
---|
| 311 | } |
---|
[896] | 312 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 313 | } |
---|
| 314 | |
---|
[935] | 315 | NeuroClass *GenoOperators::getRandomNeuroClassWithOutputAndNoInputs(Model::ShapeType for_shape_type) |
---|
[758] | 316 | { |
---|
[899] | 317 | vector<NeuroClass *> active; |
---|
[758] | 318 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[935] | 319 | { |
---|
| 320 | NeuroClass *nc = Neuro::getClass(i); |
---|
| 321 | if (nc->isShapeTypeSupported(for_shape_type) && nc->genactive && nc->getPreferredOutput() != 0 && nc->getPreferredInputs() == 0) |
---|
| 322 | active.push_back(nc); |
---|
| 323 | } |
---|
[896] | 324 | if (active.size() == 0) return NULL; else return active[rndUint(active.size())]; |
---|
[758] | 325 | } |
---|
| 326 | |
---|
[899] | 327 | int GenoOperators::getRandomNeuroClassWithOutput(const vector<NeuroClass *> &NClist) |
---|
[673] | 328 | { |
---|
| 329 | vector<int> allowed; |
---|
| 330 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 331 | if (NClist[i]->getPreferredOutput() != 0) //this NeuroClass provides output |
---|
| 332 | allowed.push_back(i); |
---|
[896] | 333 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 334 | } |
---|
| 335 | |
---|
[899] | 336 | int GenoOperators::getRandomNeuroClassWithInput(const vector<NeuroClass *> &NClist) |
---|
[673] | 337 | { |
---|
| 338 | vector<int> allowed; |
---|
| 339 | for (size_t i = 0; i < NClist.size(); i++) |
---|
| 340 | if (NClist[i]->getPreferredInputs() != 0) //this NeuroClass wants one input connection or more |
---|
| 341 | allowed.push_back(i); |
---|
[896] | 342 | if (allowed.size() == 0) return -1; else return allowed[rndUint(allowed.size())]; |
---|
[673] | 343 | } |
---|
| 344 | |
---|
| 345 | int GenoOperators::getRandomChar(const char *choices, const char *excluded) |
---|
| 346 | { |
---|
| 347 | int allowed_count = 0; |
---|
| 348 | for (size_t i = 0; i < strlen(choices); i++) if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 349 | if (allowed_count == 0) return -1; //no char is allowed |
---|
[896] | 350 | int rnd_index = rndUint(allowed_count) + 1; |
---|
[673] | 351 | allowed_count = 0; |
---|
| 352 | for (size_t i = 0; i < strlen(choices); i++) |
---|
| 353 | { |
---|
| 354 | if (!strchrn0(excluded, choices[i])) allowed_count++; |
---|
| 355 | if (allowed_count == rnd_index) return i; |
---|
| 356 | } |
---|
| 357 | return -1; //never happens |
---|
| 358 | } |
---|
| 359 | |
---|
[899] | 360 | NeuroClass *GenoOperators::parseNeuroClass(char *&s) |
---|
[109] | 361 | { |
---|
[670] | 362 | int maxlen = (int)strlen(s); |
---|
| 363 | int NClen = 0; |
---|
| 364 | NeuroClass *NC = NULL; |
---|
[899] | 365 | for (int i = 0; i < Neuro::getClassCount(); i++) |
---|
[168] | 366 | { |
---|
[670] | 367 | const char *ncname = Neuro::getClass(i)->name.c_str(); |
---|
| 368 | int ncnamelen = (int)strlen(ncname); |
---|
[899] | 369 | if (maxlen >= ncnamelen && ncnamelen > NClen && (strncmp(s, ncname, ncnamelen) == 0)) |
---|
[670] | 370 | { |
---|
| 371 | NC = Neuro::getClass(i); |
---|
| 372 | NClen = ncnamelen; |
---|
| 373 | } |
---|
[168] | 374 | } |
---|
[670] | 375 | s += NClen; |
---|
| 376 | return NC; |
---|
[109] | 377 | } |
---|
| 378 | |
---|
[899] | 379 | Neuro *GenoOperators::findNeuro(const Model *m, const NeuroClass *nc) |
---|
[109] | 380 | { |
---|
[168] | 381 | if (!m) return NULL; |
---|
| 382 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 383 | if (m->getNeuro(i)->getClass() == nc) return m->getNeuro(i); |
---|
| 384 | return NULL; //neuron of class 'nc' was not found |
---|
[109] | 385 | } |
---|
| 386 | |
---|
[899] | 387 | int GenoOperators::neuroClassProp(char *&s, NeuroClass *nc, bool also_v1_N_props) |
---|
[109] | 388 | { |
---|
[247] | 389 | int len = (int)strlen(s); |
---|
[168] | 390 | int Len = 0, I = -1; |
---|
| 391 | if (nc) |
---|
| 392 | { |
---|
| 393 | Param p = nc->getProperties(); |
---|
[899] | 394 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 395 | { |
---|
| 396 | const char *n = p.id(i); |
---|
[247] | 397 | int l = (int)strlen(n); |
---|
[957] | 398 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } |
---|
[968] | 399 | if (also_v1_N_props) //recognize old symbols of properties: /=! |
---|
[168] | 400 | { |
---|
| 401 | if (strcmp(n, "si") == 0) n = "/"; else |
---|
| 402 | if (strcmp(n, "in") == 0) n = "="; else |
---|
| 403 | if (strcmp(n, "fo") == 0) n = "!"; |
---|
[247] | 404 | l = (int)strlen(n); |
---|
[957] | 405 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = NEUROCLASS_PROP_OFFSET + i; Len = l; } |
---|
[168] | 406 | } |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | Neuro n; |
---|
| 410 | Param p = n.extraProperties(); |
---|
[899] | 411 | for (int i = 0; i < p.getPropCount(); i++) |
---|
[168] | 412 | { |
---|
| 413 | const char *n = p.id(i); |
---|
[247] | 414 | int l = (int)strlen(n); |
---|
[899] | 415 | if (len >= l && l > Len && (strncmp(s, n, l) == 0)) { I = i; Len = l; } |
---|
[168] | 416 | } |
---|
| 417 | s += Len; |
---|
| 418 | return I; |
---|
[109] | 419 | } |
---|
| 420 | |
---|
[121] | 421 | bool GenoOperators::isWS(const char c) |
---|
[168] | 422 | { |
---|
| 423 | return c == ' ' || c == '\n' || c == '\t' || c == '\r'; |
---|
| 424 | } |
---|
[109] | 425 | |
---|
[121] | 426 | void GenoOperators::skipWS(char *&s) |
---|
[158] | 427 | { |
---|
[168] | 428 | if (s == NULL) |
---|
[375] | 429 | logMessage("GenoOperators", "skipWS", LOG_WARN, "NULL reference!"); |
---|
[158] | 430 | else |
---|
[670] | 431 | while (isWS(*s)) s++; |
---|
[109] | 432 | } |
---|
| 433 | |
---|
[168] | 434 | bool GenoOperators::areAlike(char *g1, char *g2) |
---|
[109] | 435 | { |
---|
| 436 | while (*g1 || *g2) |
---|
| 437 | { |
---|
| 438 | skipWS(g1); |
---|
| 439 | skipWS(g2); |
---|
| 440 | if (*g1 != *g2) return false; //when difference |
---|
[168] | 441 | if (!*g1 && !*g2) break; //both end |
---|
| 442 | g1++; |
---|
| 443 | g2++; |
---|
[109] | 444 | } |
---|
| 445 | return true; //equal |
---|
| 446 | } |
---|
| 447 | |
---|
[899] | 448 | char *GenoOperators::strchrn0(const char *str, char ch) |
---|
[168] | 449 | { |
---|
[899] | 450 | return ch == 0 ? NULL : strchr((char *)str, ch); |
---|
[168] | 451 | } |
---|
[109] | 452 | |
---|
[758] | 453 | bool GenoOperators::canStartNeuroClassName(const char firstchar) |
---|
[109] | 454 | { |
---|
[168] | 455 | return isupper(firstchar) || firstchar == '|' || firstchar == '@' || firstchar == '*'; |
---|
[109] | 456 | } |
---|