[747] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/
|
---|
[899] | 2 | // Copyright (C) 1999-2019 Maciej Komosinski and Szymon Ulatowski.
|
---|
[747] | 3 | // See LICENSE.txt for details.
|
---|
| 4 |
|
---|
[779] | 5 | #include "fn_oper.h"
|
---|
| 6 | #include "fn_conv.h"
|
---|
[899] | 7 | #include <common/nonstd.h> //rndUint, rndDouble
|
---|
[747] | 8 |
|
---|
| 9 |
|
---|
[762] | 10 | /**
|
---|
| 11 | \class GenoOper_fn
|
---|
| 12 |
|
---|
| 13 | This genetic representation only stores a vector of real numbers. A fitness function must be provided
|
---|
| 14 | for the gene pool, for example the "Booth function" would be:
|
---|
| 15 |
|
---|
| 16 | var X = String.deserialize(this.geno.rawgenotype); //a vector of real values
|
---|
| 17 | var result = Math.pow(X[0]+2*X[1]-7,2) + Math.pow(2*X[0]+X[1]-5,2);
|
---|
| 18 | return -result; //negation because Framsticks assumes maximization, and the original function needs to be minimized
|
---|
| 19 | */
|
---|
| 20 |
|
---|
| 21 |
|
---|
| 22 |
|
---|
[747] | 23 | #define FIELDSTRUCT GenoOper_fn
|
---|
| 24 | static ParamEntry GENOfnparam_tab[] =
|
---|
| 25 | {
|
---|
[808] | 26 | { "Genetics: fn", 1, 6, },
|
---|
| 27 | { "fn_xover", 0, 0, "Fraction inherited in linear mix crossover", "f 0.5 1.0 0.9", FIELD(xover_proportion), "0.5 => children are averaged parents.\n0.8 => children are only 20% different from parents.\n1.0 => each child is identical to one parent (no crossover).", },
|
---|
| 28 | { "fn_xover_random", 0, 0, "Random fraction inherited in crossover", "d 0 1 1", FIELD(xover_proportion_random), "If active, the amount of linear mix is random in each crossover operation, so the \"Fraction inherited in linear mix crossover\" parameter is ignored.", },
|
---|
[762] | 29 | { "fn_mut_bound_low", 1, 0, "Lower bounds for mutation", "s 0 0 [-10.0, -10.0]", FIELD(mut_bound_low), "A vector of lower bounds (one real value for each variable)", },
|
---|
| 30 | { "fn_mut_bound_high", 1, 0, "Higher bounds for mutation", "s 0 0 [10.0, 10.0]", FIELD(mut_bound_high), "A vector of higher bounds (one real value for each variable)", },
|
---|
| 31 | { "fn_mut_stddev", 1, 0, "Standard deviations for mutation", "s 0 0 [0.1, 0.1]", FIELD(mut_stddev), "A vector of standard deviations (one real value for each variable)", },
|
---|
[808] | 32 | { "fn_mut_single_var", 0, 0, "Mutate only a single variable", "d 0 1 0", FIELD(mut_single_var), "If active, only a single randomly selected variable will be mutated in each mutation operation. Otherwise all variables will be mutated.", },
|
---|
[747] | 33 | { 0, },
|
---|
| 34 | };
|
---|
| 35 | #undef FIELDSTRUCT
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 |
|
---|
| 39 | GenoOper_fn::GenoOper_fn()
|
---|
| 40 | {
|
---|
| 41 | par.setParamTab(GENOfnparam_tab);
|
---|
| 42 | par.select(this);
|
---|
| 43 | par.setDefault();
|
---|
| 44 | supported_format = 'n';
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | int GenoOper_fn::checkValidity(const char* gene, const char *genoname)
|
---|
| 48 | {
|
---|
| 49 | vector<double> values = GenoConv_fn0::stringToVector(gene);
|
---|
| 50 | return values.size() > 0 ? GENOPER_OK : 1;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | int GenoOper_fn::validate(char *&gene, const char *genoname)
|
---|
| 54 | {
|
---|
| 55 | vector<double> values = GenoConv_fn0::stringToVector(gene);
|
---|
| 56 | if (values.size() == 0)
|
---|
| 57 | values.push_back(0.0);
|
---|
| 58 | string validated = GenoConv_fn0::vectorToString(values);
|
---|
| 59 | free(gene);
|
---|
| 60 | gene = strdup(validated.c_str()); //reallocate
|
---|
| 61 | return GENOPER_OK;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[809] | 64 | //Creep-mutate variable(s)
|
---|
[747] | 65 | int GenoOper_fn::mutate(char *&gene, float &chg, int &method)
|
---|
| 66 | {
|
---|
| 67 | method = 0;
|
---|
| 68 | vector<double> values = GenoConv_fn0::stringToVector(gene);
|
---|
| 69 | if (values.size() == 0)
|
---|
| 70 | return GENOPER_OPFAIL;
|
---|
[752] | 71 | vector<double> bound_low = GenoConv_fn0::stringToVector(mut_bound_low.c_str());
|
---|
| 72 | vector<double> bound_high = GenoConv_fn0::stringToVector(mut_bound_high.c_str());
|
---|
| 73 | vector<double> stddev = GenoConv_fn0::stringToVector(mut_stddev.c_str());
|
---|
| 74 | if (bound_low.size() != bound_high.size() || bound_high.size() != stddev.size() || stddev.size() != values.size())
|
---|
| 75 | {
|
---|
| 76 | logPrintf("GenoOper_fn", "mutate", LOG_ERROR, "The solution vector, bound vectors, and standard deviation vectors must all have the same number of values");
|
---|
| 77 | return GENOPER_OPFAIL;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
[808] | 80 | if (mut_single_var) //mutate only one, randomly selected variable
|
---|
| 81 | {
|
---|
[896] | 82 | int which = rndUint(values.size());
|
---|
[808] | 83 | values[which] = GenoOperators::mutateCreep('f', values[which], bound_low[which], bound_high[which], stddev[which], false);
|
---|
| 84 | chg = 1.0f / values.size();
|
---|
| 85 | }
|
---|
| 86 | else //mutate all variables
|
---|
| 87 | {
|
---|
[809] | 88 | for (int which = 0; which < (int)values.size(); which++)
|
---|
[808] | 89 | values[which] = GenoOperators::mutateCreep('f', values[which], bound_low[which], bound_high[which], stddev[which], false);
|
---|
| 90 | chg = 1.0f;
|
---|
| 91 | }
|
---|
[747] | 92 | string saved = GenoConv_fn0::vectorToString(values);
|
---|
| 93 | free(gene);
|
---|
| 94 | gene = strdup(saved.c_str()); //reallocate
|
---|
| 95 | return GENOPER_OK;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
[809] | 98 | //Averaging crossover
|
---|
[747] | 99 | int GenoOper_fn::crossOver(char *&g1, char *&g2, float& chg1, float& chg2)
|
---|
| 100 | {
|
---|
| 101 | //g1 = strdup("[1,0.5,0.5,0.5,0.5,1,1]"); //testing...
|
---|
| 102 | //g2 = strdup("[4,1, 1, 1, 1, 2,2]"); //testing...
|
---|
| 103 | //xover_proportion = 0.1; //testing...
|
---|
| 104 |
|
---|
[896] | 105 | double proportion = xover_proportion_random ? 0.5 + rndDouble(0.5) : xover_proportion;
|
---|
[762] | 106 |
|
---|
[808] | 107 | chg1 = proportion;
|
---|
| 108 | chg2 = 1 - proportion;
|
---|
| 109 |
|
---|
[747] | 110 | vector<double> v1 = GenoConv_fn0::stringToVector(g1);
|
---|
| 111 | vector<double> v2 = GenoConv_fn0::stringToVector(g2);
|
---|
| 112 |
|
---|
[762] | 113 | if (v1.size() != v2.size())
|
---|
| 114 | {
|
---|
| 115 | logPrintf("GenoOper_fn", "crossOver", LOG_ERROR, "Tried to cross over solutions with a differing number of variables (%d and %d)", v1.size(), v2.size());
|
---|
| 116 | return GENOPER_OPFAIL;
|
---|
| 117 | }
|
---|
[747] | 118 |
|
---|
[808] | 119 | GenoOperators::linearMix(v1, v2, proportion);
|
---|
[747] | 120 |
|
---|
| 121 | string saved = GenoConv_fn0::vectorToString(v1);
|
---|
| 122 | free(g1);
|
---|
| 123 | g1 = strdup(saved.c_str()); //reallocate
|
---|
| 124 | saved = GenoConv_fn0::vectorToString(v2);
|
---|
| 125 | free(g2);
|
---|
| 126 | g2 = strdup(saved.c_str()); //reallocate
|
---|
| 127 | return GENOPER_OK;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[809] | 130 | //Applying some colors and font styles...
|
---|
[747] | 131 | uint32_t GenoOper_fn::style(const char *g, int pos)
|
---|
| 132 | {
|
---|
| 133 | char ch = g[pos];
|
---|
| 134 | uint32_t style = GENSTYLE_CS(0, GENSTYLE_INVALID); //default, should be changed below
|
---|
| 135 | if (strchr("-.e 0123456789", ch) != NULL)
|
---|
| 136 | style = GENSTYLE_CS(GENCOLOR_NUMBER, GENSTYLE_NONE);
|
---|
| 137 | else if (strchr("[,]", ch) != NULL)
|
---|
| 138 | style = GENSTYLE_RGBS(0, 0, 0, GENSTYLE_BOLD);
|
---|
| 139 | return style;
|
---|
| 140 | }
|
---|