// This file is a part of Framsticks SDK. http://www.framsticks.com/ // Copyright (C) 2019-2020 Maciej Komosinski and Szymon Ulatowski. // See LICENSE.txt for details. #include #include #include "fS_oper.h" #include "frams/util/rndutil.h" #define FIELDSTRUCT GenoOper_fS static ParamEntry genooper_fS_paramtab[] = { {"Genetics: fS", 1, FS_OPCOUNT + 5,}, {"fS_mut_add_part", 0, 0, "Add part", "f 0 100 10", FIELD(prob[FS_ADD_PART]), "mutation: probability of adding a part",}, {"fS_mut_rem_part", 0, 0, "Remove part", "f 0 100 10", FIELD(prob[FS_REM_PART]), "mutation: probability of deleting a part",}, {"fS_mut_mod_part", 0, 0, "Modify part", "f 0 100 10", FIELD(prob[FS_MOD_PART]), "mutation: probability of changing the part type",}, {"fS_mut_change_joint", 0, 0, "Change joint", "f 0 100 10", FIELD(prob[FS_CHANGE_JOINT]), "mutation: probability of changing a joint",}, {"fS_mut_add_param", 0, 0, "Add param", "f 0 100 10", FIELD(prob[FS_ADD_PARAM]), "mutation: probability of adding a parameter",}, {"fS_mut_rem_param", 0, 0, "Remove param", "f 0 100 10", FIELD(prob[FS_REM_PARAM]), "mutation: probability of removing a parameter",}, {"fS_mut_mod_param", 0, 0, "Modify param", "f 0 100 10", FIELD(prob[FS_MOD_PARAM]), "mutation: probability of modifying a parameter",}, {"fS_mut_mod_mod", 0, 0, "Modify modifier", "f 0 100 10", FIELD(prob[FS_MOD_MOD]), "mutation: probability of modifying a modifier",}, {"fS_mut_add_neuro", 0, 0, "Add neuron", "f 0 100 10", FIELD(prob[FS_ADD_NEURO]), "mutation: probability of adding a neuron",}, {"fS_mut_rem_neuro", 0, 0, "Remove neuron", "f 0 100 10", FIELD(prob[FS_REM_NEURO]), "mutation: probability of removing a neuron",}, {"fS_mut_mod_neuro_conn", 0, 0, "Modify neuron connection", "f 0 100 10", FIELD(prob[FS_MOD_NEURO_CONNECTION]), "mutation: probability of changing a neuron connection",}, {"fS_mut_add_neuro_conn", 0, 0, "Add neuron connection", "f 0 100 10", FIELD(prob[FS_ADD_NEURO_CONNECTION]), "mutation: probability of adding a neuron connection",}, {"fS_mut_rem_neuro_conn", 0, 0, "Remove neuron connection", "f 0 100 10", FIELD(prob[FS_REM_NEURO_CONNECTION]), "mutation: probability of removing a neuron connection",}, {"fS_mut_mod_neuro_params", 0, 0, "Modify neuron params", "f 0 100 10", FIELD(prob[FS_MOD_NEURO_PARAMS]), "mutation: probability of changing a neuron param",}, {"fS_circle_section", 0, 0, "Ensure circle section", "d 0 1 1", FIELD(ensureCircleSection), "Ensure that ellipsoids and cylinders have circle cross-section"}, {"fS_use_elli", 0, 0, "Use ellipsoids in mutations", "d 0 1 1", FIELD(useElli), "Use ellipsoids in mutations"}, {"fS_use_cub", 0, 0, "Use cuboids in mutations", "d 0 1 1", FIELD(useCub), "Use cuboids in mutations"}, {"fS_use_cyl", 0, 0, "Use cylinders in mutations", "d 0 1 1", FIELD(useCyl), "Use cylinders in mutations"}, {"fS_mut_add_part_strong", 0, 0, "Strong add part mutation", "d 0 1 1", FIELD(strongAddPart), "Add part mutation will produce more parametrized parts"}, }; #undef FIELDSTRUCT GenoOper_fS::GenoOper_fS() { par.setParamTab(genooper_fS_paramtab); par.select(this); par.setDefault(); supported_format = 'S'; } int GenoOper_fS::checkValidity(const char *geno, const char *genoname) { try { fS_Genotype genotype(geno); int errorPosition = genotype.checkValidityOfPartSizes(); if (errorPosition != 0) { logPrintf("GenoOper_fS", "checkValidity", LOG_WARN, "Invalid part size"); return errorPosition; } } catch (fS_Exception &e) { logPrintf("GenoOper_fS", "checkValidity", LOG_WARN, e.what()); return 1 + e.errorPosition; } return 0; } int GenoOper_fS::mutate(char *&geno, float &chg, int &method) { try { fS_Genotype genotype(geno); // Calculate available part types vector availablePartShapes; if (useElli) availablePartShapes.push_back(Part::Shape::SHAPE_ELLIPSOID); if (useCub) availablePartShapes.push_back(Part::Shape::SHAPE_CUBOID); if (useCyl) availablePartShapes.push_back(Part::Shape::SHAPE_CYLINDER); // Select a mutation bool result = false; method = GenoOperators::roulette(prob, FS_OPCOUNT); switch (method) { case FS_ADD_PART: result = addPart(genotype, availablePartShapes); break; case FS_REM_PART: result = removePart(genotype); break; case FS_MOD_PART: result = changePartType(genotype, availablePartShapes); break; case FS_CHANGE_JOINT: result = changeJoint(genotype); break; case FS_ADD_PARAM: result = addParam(genotype); break; case FS_REM_PARAM: result = removeParam(genotype); break; case FS_MOD_PARAM: result = changeParam(genotype); break; case FS_MOD_MOD: result = changeModifier(genotype); break; case FS_ADD_NEURO: result = addNeuro(genotype); break; case FS_REM_NEURO: result = removeNeuro(genotype); break; case FS_MOD_NEURO_CONNECTION: result = changeNeuroConnection(genotype); break; case FS_ADD_NEURO_CONNECTION: result = addNeuroConnection(genotype); break; case FS_REM_NEURO_CONNECTION: result = removeNeuroConnection(genotype); break; case FS_MOD_NEURO_PARAMS: result = changeNeuroParam(genotype); break; } if (result) { free(geno); geno = strdup(genotype.getGeno().c_str()); return GENOPER_OK; } return GENOPER_OPFAIL; } catch (fS_Exception &e) { logPrintf("GenoOper_fS", "mutate", LOG_WARN, e.what()); return GENOPER_OPFAIL; } } int GenoOper_fS::crossOver(char *&g0, char *&g1, float &chg0, float &chg1) { try { assert(PARENT_COUNT == 2); // Cross over works only for 2 parents fS_Genotype *parents[PARENT_COUNT] = {new fS_Genotype(g0), new fS_Genotype(g1)}; // Choose random subtrees that have similar size Node *selected[PARENT_COUNT]; vector < Node * > allNodes0 = parents[0]->getAllNodes(); vector < Node * > allNodes1 = parents[1]->getAllNodes(); double bestQuotient = DBL_MAX; for (int i = 0; i < crossOverTries; i++) { Node *tmp0 = allNodes0[rndUint(allNodes0.size())]; Node *tmp1 = allNodes1[rndUint(allNodes1.size())]; // Choose this pair if it is the most similar double quotient = double(tmp0->getNodeCount()) / double(tmp1->getNodeCount()); if (quotient < 1.0) quotient = 1.0 / quotient; if (quotient < bestQuotient) { bestQuotient = quotient; selected[0] = tmp0; selected[1] = tmp1; } if (bestQuotient == 1.0) break; } // Compute gene percentages in children double subtreeSizes[PARENT_COUNT], restSizes[PARENT_COUNT]; for (int i = 0; i < PARENT_COUNT; i++) { subtreeSizes[i] = selected[i]->getNodeCount(); restSizes[i] = parents[i]->getNodeCount() - subtreeSizes[i]; } chg0 = restSizes[0] / (restSizes[0] + subtreeSizes[1]); chg1 = restSizes[1] / (restSizes[1] + subtreeSizes[0]); // Rearrange neurons before crossover int subOldStart[PARENT_COUNT] {-1, -1}; rearrangeConnectionsBeforeCrossover(parents[0], selected[0], subOldStart[0]); rearrangeConnectionsBeforeCrossover(parents[1], selected[1], subOldStart[1]); // Swap the subtress for (int i = 0; i < PARENT_COUNT; i++) { Node *other = selected[1 - i]; Node *p = selected[i]->parent; if (p != nullptr) { size_t index = std::distance(p->children.begin(), std::find(p->children.begin(), p->children.end(), selected[i])); p->children[index] = other; } else parents[i]->startNode = other; } // Rearrange neurons after crossover rearrangeConnectionsAfterCrossover(parents[0], selected[1], subOldStart[0]); rearrangeConnectionsAfterCrossover(parents[1], selected[0], subOldStart[1]); // Clenup, assign children to result strings free(g0); free(g1); g0 = strdup(parents[0]->getGeno().c_str()); g1 = strdup(parents[1]->getGeno().c_str()); delete parents[0]; delete parents[1]; } catch (fS_Exception &e) { logPrintf("GenoOper_fS", "crossOver", LOG_WARN, e.what()); return GENOPER_OPFAIL; } return GENOPER_OK; } const char *GenoOper_fS::getSimplest() { return "1.1:C{x=0.80599;y=0.80599;z=0.80599}"; } uint32_t GenoOper_fS::style(const char *geno, int pos) { char ch = geno[pos]; uint32_t style = GENSTYLE_CS(0, GENSTYLE_NONE); if (ch == ELLIPSOID || ch == CUBOID || ch == CYLINDER) // part type { style = GENSTYLE_RGBS(0, 0, 200, GENSTYLE_BOLD); } else if (JOINTS.find(ch) != string::npos) // Joint type { style = GENSTYLE_RGBS(0, 200, 200, GENSTYLE_BOLD); } else if (MODIFIERS.find(ch) != string::npos) // Modifier { style = GENSTYLE_RGBS(0, 200, 0, GENSTYLE_NONE); } else if (isdigit(ch) || strchr(".", ch)) // Numerical value { style = GENSTYLE_RGBS(200, 0, 0, GENSTYLE_NONE); } else if (strchr("()_;[],=", ch)) { style = GENSTYLE_CS(0, GENSTYLE_BOLD); // Important char } return style; } void GenoOper_fS::rearrangeConnectionsBeforeCrossover(fS_Genotype *geno, Node *sub, int &subStart) { vector < fS_Neuron * > genoNeurons = geno->getAllNeurons(); vector < fS_Neuron * > subNeurons = fS_Genotype::extractNeurons(sub); if (!subNeurons.empty()) { subStart = fS_Genotype::getNeuronIndex(genoNeurons, subNeurons[0]); fS_Genotype::shiftNeuroConnections(genoNeurons, subStart, subStart + subNeurons.size() - 1, SHIFT::LEFT); } } void GenoOper_fS::rearrangeConnectionsAfterCrossover(fS_Genotype *geno, Node *sub, int subOldStart) { vector < fS_Neuron * > genoNeurons = geno->getAllNeurons(); vector < fS_Neuron * > subNeurons = fS_Genotype::extractNeurons(sub); // Shift the inputs right if (!subNeurons.empty()) { int subStart = fS_Genotype::getNeuronIndex(genoNeurons, subNeurons[0]); int subCount = subNeurons.size(); int subEnd = subStart + subCount - 1; for (int i = 0; i < subCount; i++) { auto inputs = subNeurons[i]->inputs; std::map newInputs; // TODO figure out how to keep internal connections in subtree // for (auto it = inputs.begin(); it != inputs.end(); ++it) // { // int newIndex = it->first + subStart; // if(subEnd > newIndex && newIndex > subStart) // newInputs[newIndex] = it->second; // } subNeurons[i]->inputs = newInputs; } fS_Genotype::shiftNeuroConnections(genoNeurons, subStart, subEnd, SHIFT::RIGHT); } } bool GenoOper_fS::addPart(fS_Genotype &geno, const vector &availablePartShapes, bool mutateSize) { geno.getState(false); Node *node = geno.chooseNode(); char partType = SHAPE_TO_GENE.at(availablePartShapes[rndUint(availablePartShapes.size())]); Substring substring(&partType, 0, 1); Node *newNode = new Node(substring, node, node->genotypeParams); // Add random rotation string rotationParams[] {ROT_X, ROT_Y, ROT_Z}; if (strongAddPart) { for (int i = 0; i < 3; i++) newNode->params[rotationParams[i]] = RndGen.Uni(-M_PI / 2, M_PI / 2); } else { string selectedParam = rotationParams[rndUint(3)]; newNode->params[selectedParam] = RndGen.Uni(-M_PI / 2, M_PI / 2); } string rParams[] {RX, RY, RZ}; if (strongAddPart) { for (int i = 0; i < 3; i++) newNode->params[rParams[i]] = RndGen.Uni(-M_PI / 2, M_PI / 2); } else { string selectedParam = rParams[rndUint(3)]; newNode->params[selectedParam] = RndGen.Uni(-M_PI / 2, M_PI / 2); } // Assign part size to default value double volumeMultiplier = pow(node->getParam(SIZE) * node->state->s, 3); double minVolume = Model::getMinPart().volume; double defVolume = Model::getDefPart().volume * volumeMultiplier; // Default value after applying modifiers double maxVolume = Model::getMaxPart().volume; double volume = std::min(maxVolume, std::max(minVolume, defVolume)); double relativeVolume = volume / volumeMultiplier; // Volume without applying modifiers double newRadius = std::cbrt(relativeVolume / volumeMultipliers.at(newNode->partType)); newNode->params[SIZE_X] = newRadius; newNode->params[SIZE_Y] = newRadius; newNode->params[SIZE_Z] = newRadius; node->children.push_back(newNode); if (mutateSize) { geno.getState(false); mutateSizeParam(newNode, SIZE_X, true); mutateSizeParam(newNode, SIZE_Y, true); mutateSizeParam(newNode, SIZE_Z, true); } return true; } bool GenoOper_fS::removePart(fS_Genotype &geno) { Node *randomNode, *selectedChild; // Choose a parent with children // It may be difficult to choose a eligible node, so the number of tries should be high for (int i = 0; i < 10 * mutationTries; i++) { randomNode = geno.chooseNode(); int childCount = randomNode->children.size(); if (childCount > 0) { int selectedIndex = rndUint(childCount); selectedChild = randomNode->children[selectedIndex]; if (selectedChild->children.empty() && selectedChild->neurons.empty()) { // Remove the selected child swap(randomNode->children[selectedIndex], randomNode->children[childCount - 1]); randomNode->children.pop_back(); randomNode->children.shrink_to_fit(); delete selectedChild; return true; } } } return false; } bool GenoOper_fS::changePartType(fS_Genotype &geno, const vector &availablePartShapes) { int availShapesLen = availablePartShapes.size(); for (int i = 0; i < mutationTries; i++) { Node *randomNode = geno.chooseNode(); int index = rndUint(availShapesLen); if (availablePartShapes[index] == randomNode->partType) index = (index + 1 + rndUint(availShapesLen - 1)) % availShapesLen; Part::Shape newType = availablePartShapes[index]; #ifdef _DEBUG if(newType == randomNode->partType) throw fS_Exception("Internal error: invalid part type chosen in mutation.", 1); #endif geno.getState(false); double sizeMultiplier = randomNode->getParam(SIZE) * randomNode->state->s; double relativeVolume = randomNode->calculateVolume() / pow(sizeMultiplier, 3.0); if (!ensureCircleSection || newType == Part::Shape::SHAPE_CUBOID || (randomNode->partType == Part::Shape::SHAPE_ELLIPSOID && newType == Part::Shape::SHAPE_CYLINDER)) { double radiusQuotient = std::cbrt(volumeMultipliers.at(randomNode->partType) / volumeMultipliers.at(newType)); randomNode->params[SIZE_X] = randomNode->getParam(SIZE_X) * radiusQuotient; randomNode->params[SIZE_Y] = randomNode->getParam(SIZE_Y) * radiusQuotient; randomNode->params[SIZE_Z] = randomNode->getParam(SIZE_Z) * radiusQuotient; } else if (randomNode->partType == Part::Shape::SHAPE_CUBOID && newType == Part::Shape::SHAPE_CYLINDER) { double newRadius = 0.5 * (randomNode->getParam(SIZE_X) + randomNode->getParam(SIZE_Y)); randomNode->params[SIZE_X] = 0.5 * relativeVolume / (M_PI * newRadius * newRadius); randomNode->params[SIZE_Y] = newRadius; randomNode->params[SIZE_Z] = newRadius; } else if (newType == Part::Shape::SHAPE_ELLIPSOID) { double newRelativeRadius = cbrt(relativeVolume / volumeMultipliers.at(newType)); randomNode->params[SIZE_X] = newRelativeRadius; randomNode->params[SIZE_Y] = newRelativeRadius; randomNode->params[SIZE_Z] = newRelativeRadius; } else { throw fS_Exception("Invalid part type", 1); } randomNode->partType = newType; return true; } return false; } bool GenoOper_fS::changeJoint(fS_Genotype &geno) { if (geno.startNode->children.empty()) return false; Node *randomNode = geno.chooseNode(1); // First part does not have joints int jointLen = ALL_JOINTS.length(); int index = rndUint(jointLen); if (ALL_JOINTS[index] == randomNode->joint) index = (index + 1 + rndUint(jointLen - 1)) % jointLen; randomNode->joint = ALL_JOINTS[index]; return true; } bool GenoOper_fS::addParam(fS_Genotype &geno) { Node *randomNode = geno.chooseNode(); int paramCount = randomNode->params.size(); if (paramCount == int(PARAMS.size())) return false; string key = PARAMS[rndUint(PARAMS.size())]; if (randomNode->params.count(key) > 0) return false; // Do not allow invalid changes in part size bool isRadiusOfBase = key == SIZE_Y || key == SIZE_Z; bool isRadius = isRadiusOfBase || key == SIZE_X; if (ensureCircleSection && isRadius) { if (randomNode->partType == Part::Shape::SHAPE_ELLIPSOID) return false; if (randomNode->partType == Part::Shape::SHAPE_CYLINDER && isRadiusOfBase) return false; } // Add modified default value for param randomNode->params[key] = randomNode->defaultValues.at(key); geno.getState(false); return mutateParamValue(randomNode, key); } bool GenoOper_fS::removeParam(fS_Genotype &geno) { // Choose a node with params for (int i = 0; i < mutationTries; i++) { Node *randomNode = geno.chooseNode(); int paramCount = randomNode->params.size(); if (paramCount >= 1) { auto it = randomNode->params.begin(); advance(it, rndUint(paramCount)); string key = it->first; double value = it->second; randomNode->params.erase(key); if(geno.checkValidityOfPartSizes() == 0) return true; else { randomNode->params[key] = value; } } } return false; } bool GenoOper_fS::mutateParamValue(Node *node, string key) { // Do not allow invalid changes in part size if (std::find(SIZE_PARAMS.begin(), SIZE_PARAMS.end(), key) == SIZE_PARAMS.end()) { node->params[key] = GenoOperators::mutateCreep('f', node->getParam(key), Node::minValues.at(key), Node::maxValues.at(key), true); return true; } else return mutateSizeParam(node, key, ensureCircleSection); } bool GenoOper_fS::changeParam(fS_Genotype &geno) { geno.getState(false); for (int i = 0; i < mutationTries; i++) { Node *randomNode = geno.chooseNode(); int paramCount = randomNode->params.size(); if (paramCount >= 1) { auto it = randomNode->params.begin(); advance(it, rndUint(paramCount)); return mutateParamValue(randomNode, it->first); } } return false; } bool GenoOper_fS::changeModifier(fS_Genotype &geno) { Node *randomNode = geno.chooseNode(); char randomModifier = MODIFIERS[rndUint(MODIFIERS.length())]; int oldValue = randomNode->modifiers[randomModifier]; randomNode->modifiers[randomModifier] += rndUint(2) == 0 ? 1 : -1; bool isSizeMod = tolower(randomModifier) == SIZE_MODIFIER; if (isSizeMod && geno.checkValidityOfPartSizes() != 0) { randomNode->modifiers[randomModifier] = oldValue; return false; } return true; } bool GenoOper_fS::addNeuro(fS_Genotype &geno) { Node *randomNode = geno.chooseNode(); fS_Neuron *newNeuron; NeuroClass *rndclass = GenoOperators::getRandomNeuroClass(Model::SHAPETYPE_SOLIDS); if (rndclass->preflocation == NeuroClass::PREFER_JOINT && randomNode == geno.startNode) return false; const char *name = rndclass->getName().c_str(); newNeuron = new fS_Neuron(name, randomNode->partDescription->start, strlen(name)); int effectiveInputCount = rndclass->prefinputs > -1 ? rndclass->prefinputs : 1; if (effectiveInputCount > 0) { // Create as many connections for the neuron as possible (at most prefinputs) vector < fS_Neuron * > allNeurons = geno.getAllNeurons(); vector neuronsWithOutput; for (int i = 0; i < int(allNeurons.size()); i++) { if (allNeurons[i]->getClass()->prefoutput > 0) neuronsWithOutput.push_back(i); } int size = neuronsWithOutput.size(); if (size > 0) { for (int i = 0; i < effectiveInputCount; i++) { int selectedNeuron = neuronsWithOutput[rndUint(size)]; newNeuron->inputs[selectedNeuron] = DEFAULT_NEURO_CONNECTION_WEIGHT; } } } randomNode->neurons.push_back(newNeuron); geno.rearrangeNeuronConnections(newNeuron, SHIFT::RIGHT); return true; } bool GenoOper_fS::removeNeuro(fS_Genotype &geno) { Node *randomNode = geno.chooseNode(); for (int i = 0; i < mutationTries; i++) { randomNode = geno.chooseNode(); if (!randomNode->neurons.empty()) { // Remove the selected neuron int size = randomNode->neurons.size(); fS_Neuron *it = randomNode->neurons[rndUint(size)]; geno.rearrangeNeuronConnections(it, SHIFT::LEFT); // Important to rearrange the neurons before deleting swap(it, randomNode->neurons.back()); randomNode->neurons.pop_back(); randomNode->neurons.shrink_to_fit(); delete it; return true; } } return false; } bool GenoOper_fS::changeNeuroConnection(fS_Genotype &geno) { vector < fS_Neuron * > neurons = geno.getAllNeurons(); if (neurons.empty()) return false; int size = neurons.size(); for (int i = 0; i < mutationTries; i++) { fS_Neuron *selectedNeuron = neurons[rndUint(size)]; if (!selectedNeuron->inputs.empty()) { int inputCount = selectedNeuron->inputs.size(); auto it = selectedNeuron->inputs.begin(); advance(it, rndUint(inputCount)); it->second = GenoOperators::getMutatedNeuronConnectionWeight(it->second); return true; } } return false; } bool GenoOper_fS::addNeuroConnection(fS_Genotype &geno) { vector < fS_Neuron * > neurons = geno.getAllNeurons(); if (neurons.empty()) return false; int size = neurons.size(); fS_Neuron *selectedNeuron; for (int i = 0; i < mutationTries; i++) { selectedNeuron = neurons[rndUint(size)]; if (selectedNeuron->acceptsInputs()) break; } if (!selectedNeuron->acceptsInputs()) return false; for (int i = 0; i < mutationTries; i++) { int index = rndUint(size); if (selectedNeuron->inputs.count(index) == 0 && neurons[index]->getClass()->getPreferredOutput() > 0) { selectedNeuron->inputs[index] = DEFAULT_NEURO_CONNECTION_WEIGHT; return true; } } return false; } bool GenoOper_fS::removeNeuroConnection(fS_Genotype &geno) { vector < fS_Neuron * > neurons = geno.getAllNeurons(); if (neurons.empty()) return false; int size = neurons.size(); for (int i = 0; i < mutationTries; i++) { fS_Neuron *selectedNeuron = neurons[rndUint(size)]; if (!selectedNeuron->inputs.empty()) { int inputCount = selectedNeuron->inputs.size(); auto it = selectedNeuron->inputs.begin(); advance(it, rndUint(inputCount)); selectedNeuron->inputs.erase(it->first); return true; } } return false; } bool GenoOper_fS::changeNeuroParam(fS_Genotype &geno) { vector < fS_Neuron * > neurons = geno.getAllNeurons(); if (neurons.empty()) return false; fS_Neuron *neu = neurons[rndUint(neurons.size())]; return GenoOperators::mutateRandomNeuroClassProperty(neu); } bool GenoOper_fS::mutateSizeParam(Node *node, string key, bool ensureCircleSection) { double oldValue = node->getParam(key); double volume = node->calculateVolume(); double valueAtMinVolume, valueAtMaxVolume; if(key == SIZE) { valueAtMinVolume = oldValue * std::cbrt(Model::getMinPart().volume / volume); valueAtMaxVolume = oldValue * std::cbrt(Model::getMaxPart().volume / volume); } else { valueAtMinVolume = oldValue * Model::getMinPart().volume / volume; valueAtMaxVolume = oldValue * Model::getMaxPart().volume / volume; } double min = std::max(Node::minValues.at(key), valueAtMinVolume); double max = std::min(Node::maxValues.at(key), valueAtMaxVolume); node->params[key] = GenoOperators::mutateCreep('f', node->getParam(key), min, max, true); if (!ensureCircleSection || node->isPartSizeValid()) return true; else { node->params[key] = oldValue; return false; } }