[958] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[1130] | 2 | // Copyright (C) 2019-2021 Maciej Komosinski and Szymon Ulatowski. |
---|
[958] | 3 | // See LICENSE.txt for details. |
---|
| 4 | |
---|
| 5 | #include <float.h> |
---|
| 6 | #include <assert.h> |
---|
| 7 | #include "fS_oper.h" |
---|
| 8 | #include "frams/util/rndutil.h" |
---|
[1130] | 9 | #include <algorithm> |
---|
[958] | 10 | |
---|
| 11 | #define FIELDSTRUCT GenoOper_fS |
---|
[974] | 12 | static ParamEntry genooper_fS_paramtab[] = |
---|
[958] | 13 | { |
---|
| 14 | {"Genetics: fS", 1, FS_OPCOUNT + 5,}, |
---|
[1000] | 15 | {"fS_mut_add_part", 0, 0, "Add part", "f 0 100 10", FIELD(prob[FS_ADD_PART]), "mutation: probability of adding a part",}, |
---|
| 16 | {"fS_mut_rem_part", 0, 0, "Remove part", "f 0 100 10", FIELD(prob[FS_REM_PART]), "mutation: probability of deleting a part",}, |
---|
| 17 | {"fS_mut_mod_part", 0, 0, "Modify part", "f 0 100 10", FIELD(prob[FS_MOD_PART]), "mutation: probability of changing the part type",}, |
---|
| 18 | {"fS_mut_change_joint", 0, 0, "Change joint", "f 0 100 10", FIELD(prob[FS_CHANGE_JOINT]), "mutation: probability of changing a joint",}, |
---|
| 19 | {"fS_mut_add_param", 0, 0, "Add param", "f 0 100 10", FIELD(prob[FS_ADD_PARAM]), "mutation: probability of adding a parameter",}, |
---|
| 20 | {"fS_mut_rem_param", 0, 0, "Remove param", "f 0 100 10", FIELD(prob[FS_REM_PARAM]), "mutation: probability of removing a parameter",}, |
---|
| 21 | {"fS_mut_mod_param", 0, 0, "Modify param", "f 0 100 10", FIELD(prob[FS_MOD_PARAM]), "mutation: probability of modifying a parameter",}, |
---|
| 22 | {"fS_mut_mod_mod", 0, 0, "Modify modifier", "f 0 100 10", FIELD(prob[FS_MOD_MOD]), "mutation: probability of modifying a modifier",}, |
---|
| 23 | {"fS_mut_add_neuro", 0, 0, "Add neuron", "f 0 100 10", FIELD(prob[FS_ADD_NEURO]), "mutation: probability of adding a neuron",}, |
---|
| 24 | {"fS_mut_rem_neuro", 0, 0, "Remove neuron", "f 0 100 10", FIELD(prob[FS_REM_NEURO]), "mutation: probability of removing a neuron",}, |
---|
| 25 | {"fS_mut_mod_neuro_conn", 0, 0, "Modify neuron connection", "f 0 100 10", FIELD(prob[FS_MOD_NEURO_CONNECTION]), "mutation: probability of changing a neuron connection",}, |
---|
| 26 | {"fS_mut_add_neuro_conn", 0, 0, "Add neuron connection", "f 0 100 10", FIELD(prob[FS_ADD_NEURO_CONNECTION]), "mutation: probability of adding a neuron connection",}, |
---|
[1017] | 27 | {"fS_mut_rem_neuro_conn", 0, 0, "Remove neuron connection", "f 0 100 10", FIELD(prob[FS_REM_NEURO_CONNECTION]), "mutation: probability of removing a neuron connection",}, |
---|
[1000] | 28 | {"fS_mut_mod_neuro_params", 0, 0, "Modify neuron params", "f 0 100 10", FIELD(prob[FS_MOD_NEURO_PARAMS]), "mutation: probability of changing a neuron param",}, |
---|
| 29 | {"fS_circle_section", 0, 0, "Ensure circle section", "d 0 1 1", FIELD(ensureCircleSection), "Ensure that ellipsoids and cylinders have circle cross-section"}, |
---|
| 30 | {"fS_use_elli", 0, 0, "Use ellipsoids in mutations", "d 0 1 1", FIELD(useElli), "Use ellipsoids in mutations"}, |
---|
| 31 | {"fS_use_cub", 0, 0, "Use cuboids in mutations", "d 0 1 1", FIELD(useCub), "Use cuboids in mutations"}, |
---|
| 32 | {"fS_use_cyl", 0, 0, "Use cylinders in mutations", "d 0 1 1", FIELD(useCyl), "Use cylinders in mutations"}, |
---|
| 33 | {"fS_mut_add_part_strong", 0, 0, "Strong add part mutation", "d 0 1 1", FIELD(strongAddPart), "Add part mutation will produce more parametrized parts"}, |
---|
[958] | 34 | }; |
---|
| 35 | |
---|
| 36 | #undef FIELDSTRUCT |
---|
| 37 | |
---|
| 38 | GenoOper_fS::GenoOper_fS() |
---|
| 39 | { |
---|
[974] | 40 | par.setParamTab(genooper_fS_paramtab); |
---|
[958] | 41 | par.select(this); |
---|
| 42 | par.setDefault(); |
---|
[969] | 43 | supported_format = 'S'; |
---|
[958] | 44 | } |
---|
| 45 | |
---|
| 46 | int GenoOper_fS::checkValidity(const char *geno, const char *genoname) |
---|
| 47 | { |
---|
| 48 | try |
---|
| 49 | { |
---|
| 50 | fS_Genotype genotype(geno); |
---|
| 51 | int errorPosition = genotype.checkValidityOfPartSizes(); |
---|
[1000] | 52 | if (errorPosition != 0) |
---|
[958] | 53 | { |
---|
[1030] | 54 | logPrintf("GenoOper_fS", "checkValidity", LOG_WARN, "Invalid part scale"); |
---|
[969] | 55 | return errorPosition; |
---|
[958] | 56 | } |
---|
| 57 | } |
---|
| 58 | catch (fS_Exception &e) |
---|
| 59 | { |
---|
[1000] | 60 | logPrintf("GenoOper_fS", "checkValidity", LOG_WARN, e.what()); |
---|
[958] | 61 | return 1 + e.errorPosition; |
---|
| 62 | } |
---|
| 63 | return 0; |
---|
| 64 | } |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | int GenoOper_fS::mutate(char *&geno, float &chg, int &method) |
---|
| 68 | { |
---|
[1000] | 69 | try |
---|
| 70 | { |
---|
| 71 | fS_Genotype genotype(geno); |
---|
[958] | 72 | |
---|
[1000] | 73 | // Calculate available part types |
---|
| 74 | vector <Part::Shape> availablePartShapes; |
---|
| 75 | if (useElli) |
---|
| 76 | availablePartShapes.push_back(Part::Shape::SHAPE_ELLIPSOID); |
---|
| 77 | if (useCub) |
---|
| 78 | availablePartShapes.push_back(Part::Shape::SHAPE_CUBOID); |
---|
| 79 | if (useCyl) |
---|
| 80 | availablePartShapes.push_back(Part::Shape::SHAPE_CYLINDER); |
---|
[958] | 81 | |
---|
[1000] | 82 | // Select a mutation |
---|
| 83 | bool result = false; |
---|
| 84 | method = GenoOperators::roulette(prob, FS_OPCOUNT); |
---|
| 85 | switch (method) |
---|
| 86 | { |
---|
| 87 | case FS_ADD_PART: |
---|
| 88 | result = addPart(genotype, availablePartShapes); |
---|
| 89 | break; |
---|
| 90 | case FS_REM_PART: |
---|
| 91 | result = removePart(genotype); |
---|
| 92 | break; |
---|
| 93 | case FS_MOD_PART: |
---|
| 94 | result = changePartType(genotype, availablePartShapes); |
---|
| 95 | break; |
---|
| 96 | case FS_CHANGE_JOINT: |
---|
| 97 | result = changeJoint(genotype); |
---|
| 98 | break; |
---|
| 99 | case FS_ADD_PARAM: |
---|
| 100 | result = addParam(genotype); |
---|
| 101 | break; |
---|
| 102 | case FS_REM_PARAM: |
---|
| 103 | result = removeParam(genotype); |
---|
| 104 | break; |
---|
| 105 | case FS_MOD_PARAM: |
---|
| 106 | result = changeParam(genotype); |
---|
| 107 | break; |
---|
| 108 | case FS_MOD_MOD: |
---|
| 109 | result = changeModifier(genotype); |
---|
| 110 | break; |
---|
| 111 | case FS_ADD_NEURO: |
---|
| 112 | result = addNeuro(genotype); |
---|
| 113 | break; |
---|
| 114 | case FS_REM_NEURO: |
---|
| 115 | result = removeNeuro(genotype); |
---|
| 116 | break; |
---|
| 117 | case FS_MOD_NEURO_CONNECTION: |
---|
| 118 | result = changeNeuroConnection(genotype); |
---|
| 119 | break; |
---|
| 120 | case FS_ADD_NEURO_CONNECTION: |
---|
| 121 | result = addNeuroConnection(genotype); |
---|
| 122 | break; |
---|
| 123 | case FS_REM_NEURO_CONNECTION: |
---|
| 124 | result = removeNeuroConnection(genotype); |
---|
| 125 | break; |
---|
| 126 | case FS_MOD_NEURO_PARAMS: |
---|
| 127 | result = changeNeuroParam(genotype); |
---|
| 128 | break; |
---|
| 129 | } |
---|
| 130 | |
---|
| 131 | if (result) |
---|
| 132 | { |
---|
| 133 | free(geno); |
---|
| 134 | geno = strdup(genotype.getGeno().c_str()); |
---|
| 135 | return GENOPER_OK; |
---|
| 136 | } |
---|
| 137 | return GENOPER_OPFAIL; |
---|
[958] | 138 | } |
---|
[1000] | 139 | catch (fS_Exception &e) |
---|
[958] | 140 | { |
---|
[1000] | 141 | logPrintf("GenoOper_fS", "mutate", LOG_WARN, e.what()); |
---|
| 142 | return GENOPER_OPFAIL; |
---|
[958] | 143 | } |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | int GenoOper_fS::crossOver(char *&g0, char *&g1, float &chg0, float &chg1) |
---|
| 147 | { |
---|
[1000] | 148 | try |
---|
| 149 | { |
---|
| 150 | assert(PARENT_COUNT == 2); // Cross over works only for 2 parents |
---|
| 151 | fS_Genotype *parents[PARENT_COUNT] = {new fS_Genotype(g0), new fS_Genotype(g1)}; |
---|
[958] | 152 | |
---|
[1000] | 153 | // Choose random subtrees that have similar size |
---|
| 154 | Node *selected[PARENT_COUNT]; |
---|
| 155 | vector < Node * > allNodes0 = parents[0]->getAllNodes(); |
---|
| 156 | vector < Node * > allNodes1 = parents[1]->getAllNodes(); |
---|
[958] | 157 | |
---|
[1000] | 158 | double bestQuotient = DBL_MAX; |
---|
| 159 | for (int i = 0; i < crossOverTries; i++) |
---|
[958] | 160 | { |
---|
[1000] | 161 | Node *tmp0 = allNodes0[rndUint(allNodes0.size())]; |
---|
| 162 | Node *tmp1 = allNodes1[rndUint(allNodes1.size())]; |
---|
| 163 | // Choose this pair if it is the most similar |
---|
| 164 | double quotient = double(tmp0->getNodeCount()) / double(tmp1->getNodeCount()); |
---|
| 165 | if (quotient < 1.0) |
---|
| 166 | quotient = 1.0 / quotient; |
---|
| 167 | if (quotient < bestQuotient) |
---|
| 168 | { |
---|
| 169 | bestQuotient = quotient; |
---|
| 170 | selected[0] = tmp0; |
---|
| 171 | selected[1] = tmp1; |
---|
| 172 | } |
---|
| 173 | if (bestQuotient == 1.0) |
---|
| 174 | break; |
---|
[958] | 175 | } |
---|
| 176 | |
---|
[1000] | 177 | // Compute gene percentages in children |
---|
| 178 | double subtreeSizes[PARENT_COUNT], restSizes[PARENT_COUNT]; |
---|
| 179 | for (int i = 0; i < PARENT_COUNT; i++) |
---|
| 180 | { |
---|
[958] | 181 | |
---|
[1000] | 182 | subtreeSizes[i] = selected[i]->getNodeCount(); |
---|
| 183 | restSizes[i] = parents[i]->getNodeCount() - subtreeSizes[i]; |
---|
| 184 | } |
---|
| 185 | chg0 = restSizes[0] / (restSizes[0] + subtreeSizes[1]); |
---|
| 186 | chg1 = restSizes[1] / (restSizes[1] + subtreeSizes[0]); |
---|
[958] | 187 | |
---|
[1000] | 188 | // Rearrange neurons before crossover |
---|
| 189 | int subOldStart[PARENT_COUNT] {-1, -1}; |
---|
| 190 | rearrangeConnectionsBeforeCrossover(parents[0], selected[0], subOldStart[0]); |
---|
| 191 | rearrangeConnectionsBeforeCrossover(parents[1], selected[1], subOldStart[1]); |
---|
[958] | 192 | |
---|
[1000] | 193 | // Swap the subtress |
---|
| 194 | for (int i = 0; i < PARENT_COUNT; i++) |
---|
[958] | 195 | { |
---|
[1000] | 196 | Node *other = selected[1 - i]; |
---|
| 197 | Node *p = selected[i]->parent; |
---|
| 198 | if (p != nullptr) |
---|
| 199 | { |
---|
| 200 | size_t index = std::distance(p->children.begin(), std::find(p->children.begin(), p->children.end(), selected[i])); |
---|
| 201 | p->children[index] = other; |
---|
| 202 | } else |
---|
| 203 | parents[i]->startNode = other; |
---|
| 204 | } |
---|
[958] | 205 | |
---|
[1000] | 206 | // Rearrange neurons after crossover |
---|
| 207 | rearrangeConnectionsAfterCrossover(parents[0], selected[1], subOldStart[0]); |
---|
| 208 | rearrangeConnectionsAfterCrossover(parents[1], selected[0], subOldStart[1]); |
---|
[958] | 209 | |
---|
[1000] | 210 | // Clenup, assign children to result strings |
---|
| 211 | free(g0); |
---|
| 212 | free(g1); |
---|
| 213 | g0 = strdup(parents[0]->getGeno().c_str()); |
---|
| 214 | g1 = strdup(parents[1]->getGeno().c_str()); |
---|
[958] | 215 | |
---|
[1000] | 216 | delete parents[0]; |
---|
| 217 | delete parents[1]; |
---|
| 218 | } |
---|
| 219 | catch (fS_Exception &e) |
---|
| 220 | { |
---|
| 221 | logPrintf("GenoOper_fS", "crossOver", LOG_WARN, e.what()); |
---|
| 222 | return GENOPER_OPFAIL; |
---|
| 223 | } |
---|
[958] | 224 | return GENOPER_OK; |
---|
| 225 | } |
---|
| 226 | |
---|
[1000] | 227 | const char *GenoOper_fS::getSimplest() |
---|
[958] | 228 | { |
---|
[1032] | 229 | return "1.1,0,0.4:C{x=0.80599,y=0.80599,z=0.80599}"; |
---|
[958] | 230 | } |
---|
| 231 | |
---|
| 232 | uint32_t GenoOper_fS::style(const char *geno, int pos) |
---|
| 233 | { |
---|
| 234 | char ch = geno[pos]; |
---|
| 235 | uint32_t style = GENSTYLE_CS(0, GENSTYLE_NONE); |
---|
| 236 | if (ch == ELLIPSOID || ch == CUBOID || ch == CYLINDER) // part type |
---|
| 237 | { |
---|
| 238 | style = GENSTYLE_RGBS(0, 0, 200, GENSTYLE_BOLD); |
---|
[1000] | 239 | } else if (JOINTS.find(ch) != string::npos) // Joint type |
---|
[958] | 240 | { |
---|
| 241 | style = GENSTYLE_RGBS(0, 200, 200, GENSTYLE_BOLD); |
---|
[1000] | 242 | } else if (MODIFIERS.find(ch) != string::npos) // Modifier |
---|
[958] | 243 | { |
---|
| 244 | style = GENSTYLE_RGBS(0, 200, 0, GENSTYLE_NONE); |
---|
[1000] | 245 | } else if (isdigit(ch) || strchr(".", ch)) // Numerical value |
---|
[958] | 246 | { |
---|
| 247 | style = GENSTYLE_RGBS(200, 0, 0, GENSTYLE_NONE); |
---|
[1000] | 248 | } else if (strchr("()_;[],=", ch)) |
---|
[958] | 249 | { |
---|
| 250 | style = GENSTYLE_CS(0, GENSTYLE_BOLD); // Important char |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | return style; |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | void GenoOper_fS::rearrangeConnectionsBeforeCrossover(fS_Genotype *geno, Node *sub, int &subStart) |
---|
| 257 | { |
---|
[1000] | 258 | vector < fS_Neuron * > genoNeurons = geno->getAllNeurons(); |
---|
| 259 | vector < fS_Neuron * > subNeurons = fS_Genotype::extractNeurons(sub); |
---|
[958] | 260 | |
---|
| 261 | if (!subNeurons.empty()) |
---|
| 262 | { |
---|
| 263 | subStart = fS_Genotype::getNeuronIndex(genoNeurons, subNeurons[0]); |
---|
| 264 | fS_Genotype::shiftNeuroConnections(genoNeurons, subStart, subStart + subNeurons.size() - 1, SHIFT::LEFT); |
---|
| 265 | } |
---|
| 266 | } |
---|
| 267 | |
---|
| 268 | void GenoOper_fS::rearrangeConnectionsAfterCrossover(fS_Genotype *geno, Node *sub, int subOldStart) |
---|
| 269 | { |
---|
[1000] | 270 | vector < fS_Neuron * > genoNeurons = geno->getAllNeurons(); |
---|
| 271 | vector < fS_Neuron * > subNeurons = fS_Genotype::extractNeurons(sub); |
---|
[958] | 272 | |
---|
| 273 | // Shift the inputs right |
---|
| 274 | if (!subNeurons.empty()) |
---|
| 275 | { |
---|
| 276 | int subStart = fS_Genotype::getNeuronIndex(genoNeurons, subNeurons[0]); |
---|
| 277 | int subCount = subNeurons.size(); |
---|
| 278 | int subEnd = subStart + subCount - 1; |
---|
| 279 | for (int i = 0; i < subCount; i++) |
---|
| 280 | { |
---|
| 281 | auto inputs = subNeurons[i]->inputs; |
---|
| 282 | std::map<int, double> newInputs; |
---|
| 283 | // TODO figure out how to keep internal connections in subtree |
---|
| 284 | // for (auto it = inputs.begin(); it != inputs.end(); ++it) |
---|
| 285 | // { |
---|
| 286 | // int newIndex = it->first + subStart; |
---|
| 287 | // if(subEnd > newIndex && newIndex > subStart) |
---|
| 288 | // newInputs[newIndex] = it->second; |
---|
| 289 | // } |
---|
| 290 | subNeurons[i]->inputs = newInputs; |
---|
| 291 | } |
---|
| 292 | fS_Genotype::shiftNeuroConnections(genoNeurons, subStart, subEnd, SHIFT::RIGHT); |
---|
| 293 | } |
---|
| 294 | } |
---|
| 295 | |
---|
[1000] | 296 | bool GenoOper_fS::addPart(fS_Genotype &geno, const vector <Part::Shape> &availablePartShapes, bool mutateSize) |
---|
[958] | 297 | { |
---|
[1017] | 298 | geno.getState(false); |
---|
[958] | 299 | Node *node = geno.chooseNode(); |
---|
[1030] | 300 | char partShape = SHAPE_TO_GENE.at(availablePartShapes[rndUint(availablePartShapes.size())]); |
---|
[958] | 301 | |
---|
[1030] | 302 | Substring substring(&partShape, 0, 1); |
---|
[1000] | 303 | Node *newNode = new Node(substring, node, node->genotypeParams); |
---|
[958] | 304 | // Add random rotation |
---|
[1000] | 305 | string rotationParams[] {ROT_X, ROT_Y, ROT_Z}; |
---|
| 306 | if (strongAddPart) |
---|
[958] | 307 | { |
---|
[1000] | 308 | for (int i = 0; i < 3; i++) |
---|
[969] | 309 | newNode->params[rotationParams[i]] = RndGen.Uni(-M_PI / 2, M_PI / 2); |
---|
[1000] | 310 | } else |
---|
[958] | 311 | { |
---|
| 312 | string selectedParam = rotationParams[rndUint(3)]; |
---|
[969] | 313 | newNode->params[selectedParam] = RndGen.Uni(-M_PI / 2, M_PI / 2); |
---|
[958] | 314 | } |
---|
[1000] | 315 | string rParams[] {RX, RY, RZ}; |
---|
| 316 | if (strongAddPart) |
---|
[958] | 317 | { |
---|
[1000] | 318 | for (int i = 0; i < 3; i++) |
---|
[969] | 319 | newNode->params[rParams[i]] = RndGen.Uni(-M_PI / 2, M_PI / 2); |
---|
[1000] | 320 | } else |
---|
[958] | 321 | { |
---|
| 322 | string selectedParam = rParams[rndUint(3)]; |
---|
[969] | 323 | newNode->params[selectedParam] = RndGen.Uni(-M_PI / 2, M_PI / 2); |
---|
[958] | 324 | } |
---|
[1030] | 325 | // Assign part scale to default value |
---|
| 326 | double volumeMultiplier = pow(node->getParam(SCALE) * node->state->s, 3); |
---|
[958] | 327 | double minVolume = Model::getMinPart().volume; |
---|
| 328 | double defVolume = Model::getDefPart().volume * volumeMultiplier; // Default value after applying modifiers |
---|
| 329 | double maxVolume = Model::getMaxPart().volume; |
---|
| 330 | double volume = std::min(maxVolume, std::max(minVolume, defVolume)); |
---|
| 331 | double relativeVolume = volume / volumeMultiplier; // Volume without applying modifiers |
---|
| 332 | |
---|
[1030] | 333 | double newRadius = std::cbrt(relativeVolume / volumeMultipliers.at(newNode->partShape)); |
---|
| 334 | newNode->params[SCALE_X] = newRadius; |
---|
| 335 | newNode->params[SCALE_Y] = newRadius; |
---|
| 336 | newNode->params[SCALE_Z] = newRadius; |
---|
[958] | 337 | node->children.push_back(newNode); |
---|
| 338 | |
---|
| 339 | if (mutateSize) |
---|
| 340 | { |
---|
[1017] | 341 | geno.getState(false); |
---|
[1056] | 342 | mutateScaleParam(newNode, SCALE_X, true); //TODO 2020-12: mac->JS: should be true or rather ensureCircleSection? |
---|
[1030] | 343 | mutateScaleParam(newNode, SCALE_Y, true); |
---|
| 344 | mutateScaleParam(newNode, SCALE_Z, true); |
---|
[958] | 345 | } |
---|
| 346 | return true; |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | bool GenoOper_fS::removePart(fS_Genotype &geno) |
---|
| 350 | { |
---|
| 351 | Node *randomNode, *selectedChild; |
---|
| 352 | // Choose a parent with children |
---|
[1030] | 353 | // It may be difficult to choose an eligible node, so the number of tries should be high |
---|
[1017] | 354 | for (int i = 0; i < 10 * mutationTries; i++) |
---|
[958] | 355 | { |
---|
| 356 | randomNode = geno.chooseNode(); |
---|
| 357 | int childCount = randomNode->children.size(); |
---|
| 358 | if (childCount > 0) |
---|
| 359 | { |
---|
| 360 | int selectedIndex = rndUint(childCount); |
---|
| 361 | selectedChild = randomNode->children[selectedIndex]; |
---|
| 362 | if (selectedChild->children.empty() && selectedChild->neurons.empty()) |
---|
| 363 | { |
---|
| 364 | // Remove the selected child |
---|
[1130] | 365 | std::swap(randomNode->children[selectedIndex], randomNode->children[childCount - 1]); |
---|
[958] | 366 | randomNode->children.pop_back(); |
---|
| 367 | randomNode->children.shrink_to_fit(); |
---|
| 368 | delete selectedChild; |
---|
| 369 | return true; |
---|
| 370 | } |
---|
| 371 | } |
---|
| 372 | } |
---|
| 373 | return false; |
---|
| 374 | } |
---|
| 375 | |
---|
[1000] | 376 | bool GenoOper_fS::changePartType(fS_Genotype &geno, const vector <Part::Shape> &availablePartShapes) |
---|
[958] | 377 | { |
---|
[1000] | 378 | int availShapesLen = availablePartShapes.size(); |
---|
[958] | 379 | for (int i = 0; i < mutationTries; i++) |
---|
| 380 | { |
---|
| 381 | Node *randomNode = geno.chooseNode(); |
---|
[1000] | 382 | int index = rndUint(availShapesLen); |
---|
[1030] | 383 | if (availablePartShapes[index] == randomNode->partShape) |
---|
[1000] | 384 | index = (index + 1 + rndUint(availShapesLen - 1)) % availShapesLen; |
---|
| 385 | Part::Shape newType = availablePartShapes[index]; |
---|
[958] | 386 | |
---|
| 387 | #ifdef _DEBUG |
---|
[1030] | 388 | if(newType == randomNode->partShape) |
---|
[958] | 389 | throw fS_Exception("Internal error: invalid part type chosen in mutation.", 1); |
---|
| 390 | #endif |
---|
| 391 | |
---|
[1017] | 392 | geno.getState(false); |
---|
[1030] | 393 | double scaleMultiplier = randomNode->getParam(SCALE) * randomNode->state->s; |
---|
| 394 | double relativeVolume = randomNode->calculateVolume() / pow(scaleMultiplier, 3.0); |
---|
[969] | 395 | |
---|
[1030] | 396 | if (!ensureCircleSection || newType == Part::Shape::SHAPE_CUBOID || (randomNode->partShape == Part::Shape::SHAPE_ELLIPSOID && newType == Part::Shape::SHAPE_CYLINDER)) |
---|
[958] | 397 | { |
---|
[1030] | 398 | double radiusQuotient = std::cbrt(volumeMultipliers.at(randomNode->partShape) / volumeMultipliers.at(newType)); |
---|
| 399 | randomNode->params[SCALE_X] = randomNode->getParam(SCALE_X) * radiusQuotient; |
---|
| 400 | randomNode->params[SCALE_Y] = randomNode->getParam(SCALE_Y) * radiusQuotient; |
---|
| 401 | randomNode->params[SCALE_Z] = randomNode->getParam(SCALE_Z) * radiusQuotient; |
---|
| 402 | } else if (randomNode->partShape == Part::Shape::SHAPE_CUBOID && newType == Part::Shape::SHAPE_CYLINDER) |
---|
[969] | 403 | { |
---|
[1030] | 404 | double newRadius = 0.5 * (randomNode->getParam(SCALE_X) + randomNode->getParam(SCALE_Y)); |
---|
| 405 | randomNode->params[SCALE_X] = 0.5 * relativeVolume / (M_PI * newRadius * newRadius); |
---|
| 406 | randomNode->params[SCALE_Y] = newRadius; |
---|
| 407 | randomNode->params[SCALE_Z] = newRadius; |
---|
[1000] | 408 | } else if (newType == Part::Shape::SHAPE_ELLIPSOID) |
---|
[969] | 409 | { |
---|
| 410 | double newRelativeRadius = cbrt(relativeVolume / volumeMultipliers.at(newType)); |
---|
[1030] | 411 | randomNode->params[SCALE_X] = newRelativeRadius; |
---|
| 412 | randomNode->params[SCALE_Y] = newRelativeRadius; |
---|
| 413 | randomNode->params[SCALE_Z] = newRelativeRadius; |
---|
[1000] | 414 | } else |
---|
[969] | 415 | { |
---|
| 416 | throw fS_Exception("Invalid part type", 1); |
---|
| 417 | } |
---|
[1030] | 418 | randomNode->partShape = newType; |
---|
[958] | 419 | return true; |
---|
| 420 | } |
---|
| 421 | return false; |
---|
| 422 | } |
---|
| 423 | |
---|
[969] | 424 | bool GenoOper_fS::changeJoint(fS_Genotype &geno) |
---|
[958] | 425 | { |
---|
| 426 | if (geno.startNode->children.empty()) |
---|
| 427 | return false; |
---|
| 428 | |
---|
[969] | 429 | Node *randomNode = geno.chooseNode(1); // First part does not have joints |
---|
[1000] | 430 | int jointLen = ALL_JOINTS.length(); |
---|
[969] | 431 | int index = rndUint(jointLen); |
---|
| 432 | if (ALL_JOINTS[index] == randomNode->joint) |
---|
| 433 | index = (index + 1 + rndUint(jointLen - 1)) % jointLen; |
---|
[958] | 434 | |
---|
[969] | 435 | randomNode->joint = ALL_JOINTS[index]; |
---|
| 436 | return true; |
---|
[958] | 437 | } |
---|
| 438 | |
---|
| 439 | bool GenoOper_fS::addParam(fS_Genotype &geno) |
---|
| 440 | { |
---|
| 441 | Node *randomNode = geno.chooseNode(); |
---|
| 442 | int paramCount = randomNode->params.size(); |
---|
| 443 | if (paramCount == int(PARAMS.size())) |
---|
| 444 | return false; |
---|
[969] | 445 | string key = PARAMS[rndUint(PARAMS.size())]; |
---|
| 446 | if (randomNode->params.count(key) > 0) |
---|
[958] | 447 | return false; |
---|
| 448 | // Do not allow invalid changes in part size |
---|
[1030] | 449 | bool isRadiusOfBase = key == SCALE_Y || key == SCALE_Z; |
---|
| 450 | bool isRadius = isRadiusOfBase || key == SCALE_X; |
---|
[958] | 451 | if (ensureCircleSection && isRadius) |
---|
| 452 | { |
---|
[1030] | 453 | if (randomNode->partShape == Part::Shape::SHAPE_ELLIPSOID) |
---|
[958] | 454 | return false; |
---|
[1030] | 455 | if (randomNode->partShape == Part::Shape::SHAPE_CYLINDER && isRadiusOfBase) |
---|
[958] | 456 | return false; |
---|
| 457 | } |
---|
| 458 | // Add modified default value for param |
---|
[1017] | 459 | randomNode->params[key] = randomNode->defaultValues.at(key); |
---|
| 460 | geno.getState(false); |
---|
| 461 | return mutateParamValue(randomNode, key); |
---|
[958] | 462 | } |
---|
| 463 | |
---|
| 464 | bool GenoOper_fS::removeParam(fS_Genotype &geno) |
---|
| 465 | { |
---|
| 466 | // Choose a node with params |
---|
| 467 | for (int i = 0; i < mutationTries; i++) |
---|
| 468 | { |
---|
| 469 | Node *randomNode = geno.chooseNode(); |
---|
| 470 | int paramCount = randomNode->params.size(); |
---|
| 471 | if (paramCount >= 1) |
---|
| 472 | { |
---|
| 473 | auto it = randomNode->params.begin(); |
---|
| 474 | advance(it, rndUint(paramCount)); |
---|
[1017] | 475 | string key = it->first; |
---|
| 476 | double value = it->second; |
---|
| 477 | |
---|
| 478 | randomNode->params.erase(key); |
---|
| 479 | if(geno.checkValidityOfPartSizes() == 0) |
---|
| 480 | return true; |
---|
| 481 | else |
---|
| 482 | { |
---|
| 483 | randomNode->params[key] = value; |
---|
| 484 | } |
---|
[958] | 485 | } |
---|
| 486 | } |
---|
| 487 | return false; |
---|
| 488 | } |
---|
| 489 | |
---|
[1017] | 490 | |
---|
| 491 | bool GenoOper_fS::mutateParamValue(Node *node, string key) |
---|
| 492 | { |
---|
[1030] | 493 | // Do not allow invalid changes in part scale |
---|
| 494 | if (std::find(SCALE_PARAMS.begin(), SCALE_PARAMS.end(), key) == SCALE_PARAMS.end()) |
---|
[1017] | 495 | { |
---|
[1030] | 496 | double max = Node::maxValues.at(key); |
---|
| 497 | double min = Node::minValues.at(key); |
---|
| 498 | double stddev = (max - min) * node->genotypeParams.paramMutationStrength; |
---|
| 499 | node->params[key] = GenoOperators::mutateCreep('f', node->getParam(key), min, max, stddev, true); |
---|
[1017] | 500 | return true; |
---|
| 501 | } else |
---|
[1030] | 502 | return mutateScaleParam(node, key, ensureCircleSection); |
---|
[1017] | 503 | } |
---|
| 504 | |
---|
[958] | 505 | bool GenoOper_fS::changeParam(fS_Genotype &geno) |
---|
| 506 | { |
---|
[1017] | 507 | geno.getState(false); |
---|
[958] | 508 | for (int i = 0; i < mutationTries; i++) |
---|
| 509 | { |
---|
| 510 | Node *randomNode = geno.chooseNode(); |
---|
| 511 | int paramCount = randomNode->params.size(); |
---|
| 512 | if (paramCount >= 1) |
---|
| 513 | { |
---|
| 514 | auto it = randomNode->params.begin(); |
---|
| 515 | advance(it, rndUint(paramCount)); |
---|
[1017] | 516 | return mutateParamValue(randomNode, it->first); |
---|
[958] | 517 | } |
---|
| 518 | } |
---|
| 519 | return false; |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | bool GenoOper_fS::changeModifier(fS_Genotype &geno) |
---|
| 523 | { |
---|
| 524 | Node *randomNode = geno.chooseNode(); |
---|
| 525 | char randomModifier = MODIFIERS[rndUint(MODIFIERS.length())]; |
---|
[1017] | 526 | int oldValue = randomNode->modifiers[randomModifier]; |
---|
| 527 | |
---|
[958] | 528 | randomNode->modifiers[randomModifier] += rndUint(2) == 0 ? 1 : -1; |
---|
| 529 | |
---|
[1030] | 530 | bool isSizeMod = tolower(randomModifier) == SCALE_MODIFIER; |
---|
[958] | 531 | if (isSizeMod && geno.checkValidityOfPartSizes() != 0) |
---|
| 532 | { |
---|
[1017] | 533 | randomNode->modifiers[randomModifier] = oldValue; |
---|
[958] | 534 | return false; |
---|
| 535 | } |
---|
| 536 | return true; |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | bool GenoOper_fS::addNeuro(fS_Genotype &geno) |
---|
| 540 | { |
---|
| 541 | Node *randomNode = geno.chooseNode(); |
---|
| 542 | fS_Neuron *newNeuron; |
---|
[1000] | 543 | NeuroClass *rndclass = GenoOperators::getRandomNeuroClass(Model::SHAPETYPE_SOLIDS); |
---|
| 544 | if (rndclass->preflocation == NeuroClass::PREFER_JOINT && randomNode == geno.startNode) |
---|
[958] | 545 | return false; |
---|
| 546 | |
---|
| 547 | const char *name = rndclass->getName().c_str(); |
---|
| 548 | newNeuron = new fS_Neuron(name, randomNode->partDescription->start, strlen(name)); |
---|
| 549 | int effectiveInputCount = rndclass->prefinputs > -1 ? rndclass->prefinputs : 1; |
---|
| 550 | if (effectiveInputCount > 0) |
---|
| 551 | { |
---|
| 552 | // Create as many connections for the neuron as possible (at most prefinputs) |
---|
[1000] | 553 | vector < fS_Neuron * > allNeurons = geno.getAllNeurons(); |
---|
[958] | 554 | vector<int> neuronsWithOutput; |
---|
| 555 | for (int i = 0; i < int(allNeurons.size()); i++) |
---|
| 556 | { |
---|
| 557 | if (allNeurons[i]->getClass()->prefoutput > 0) |
---|
| 558 | neuronsWithOutput.push_back(i); |
---|
| 559 | } |
---|
| 560 | int size = neuronsWithOutput.size(); |
---|
| 561 | if (size > 0) |
---|
| 562 | { |
---|
| 563 | for (int i = 0; i < effectiveInputCount; i++) |
---|
| 564 | { |
---|
| 565 | int selectedNeuron = neuronsWithOutput[rndUint(size)]; |
---|
| 566 | newNeuron->inputs[selectedNeuron] = DEFAULT_NEURO_CONNECTION_WEIGHT; |
---|
| 567 | } |
---|
| 568 | } |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | randomNode->neurons.push_back(newNeuron); |
---|
| 572 | |
---|
| 573 | geno.rearrangeNeuronConnections(newNeuron, SHIFT::RIGHT); |
---|
| 574 | return true; |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | bool GenoOper_fS::removeNeuro(fS_Genotype &geno) |
---|
| 578 | { |
---|
| 579 | Node *randomNode = geno.chooseNode(); |
---|
| 580 | for (int i = 0; i < mutationTries; i++) |
---|
| 581 | { |
---|
| 582 | randomNode = geno.chooseNode(); |
---|
| 583 | if (!randomNode->neurons.empty()) |
---|
| 584 | { |
---|
| 585 | // Remove the selected neuron |
---|
| 586 | int size = randomNode->neurons.size(); |
---|
| 587 | fS_Neuron *it = randomNode->neurons[rndUint(size)]; |
---|
| 588 | geno.rearrangeNeuronConnections(it, SHIFT::LEFT); // Important to rearrange the neurons before deleting |
---|
[1130] | 589 | std::swap(it, randomNode->neurons.back()); |
---|
[958] | 590 | randomNode->neurons.pop_back(); |
---|
| 591 | randomNode->neurons.shrink_to_fit(); |
---|
| 592 | delete it; |
---|
| 593 | return true; |
---|
| 594 | } |
---|
| 595 | } |
---|
| 596 | return false; |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | bool GenoOper_fS::changeNeuroConnection(fS_Genotype &geno) |
---|
| 600 | { |
---|
[1000] | 601 | vector < fS_Neuron * > neurons = geno.getAllNeurons(); |
---|
[958] | 602 | if (neurons.empty()) |
---|
| 603 | return false; |
---|
| 604 | |
---|
| 605 | int size = neurons.size(); |
---|
| 606 | for (int i = 0; i < mutationTries; i++) |
---|
| 607 | { |
---|
| 608 | fS_Neuron *selectedNeuron = neurons[rndUint(size)]; |
---|
| 609 | if (!selectedNeuron->inputs.empty()) |
---|
| 610 | { |
---|
| 611 | int inputCount = selectedNeuron->inputs.size(); |
---|
| 612 | auto it = selectedNeuron->inputs.begin(); |
---|
| 613 | advance(it, rndUint(inputCount)); |
---|
| 614 | |
---|
[969] | 615 | it->second = GenoOperators::getMutatedNeuronConnectionWeight(it->second); |
---|
[958] | 616 | return true; |
---|
| 617 | } |
---|
| 618 | } |
---|
| 619 | return false; |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | bool GenoOper_fS::addNeuroConnection(fS_Genotype &geno) |
---|
| 623 | { |
---|
[1000] | 624 | vector < fS_Neuron * > neurons = geno.getAllNeurons(); |
---|
[958] | 625 | if (neurons.empty()) |
---|
| 626 | return false; |
---|
| 627 | |
---|
| 628 | int size = neurons.size(); |
---|
| 629 | fS_Neuron *selectedNeuron; |
---|
| 630 | for (int i = 0; i < mutationTries; i++) |
---|
| 631 | { |
---|
| 632 | selectedNeuron = neurons[rndUint(size)]; |
---|
| 633 | if (selectedNeuron->acceptsInputs()) |
---|
| 634 | break; |
---|
| 635 | } |
---|
| 636 | if (!selectedNeuron->acceptsInputs()) |
---|
| 637 | return false; |
---|
| 638 | |
---|
| 639 | for (int i = 0; i < mutationTries; i++) |
---|
| 640 | { |
---|
| 641 | int index = rndUint(size); |
---|
| 642 | if (selectedNeuron->inputs.count(index) == 0 && neurons[index]->getClass()->getPreferredOutput() > 0) |
---|
| 643 | { |
---|
| 644 | |
---|
| 645 | selectedNeuron->inputs[index] = DEFAULT_NEURO_CONNECTION_WEIGHT; |
---|
| 646 | return true; |
---|
| 647 | } |
---|
| 648 | } |
---|
| 649 | return false; |
---|
| 650 | } |
---|
| 651 | |
---|
| 652 | bool GenoOper_fS::removeNeuroConnection(fS_Genotype &geno) |
---|
| 653 | { |
---|
[1000] | 654 | vector < fS_Neuron * > neurons = geno.getAllNeurons(); |
---|
[958] | 655 | if (neurons.empty()) |
---|
| 656 | return false; |
---|
| 657 | |
---|
| 658 | int size = neurons.size(); |
---|
| 659 | for (int i = 0; i < mutationTries; i++) |
---|
| 660 | { |
---|
| 661 | fS_Neuron *selectedNeuron = neurons[rndUint(size)]; |
---|
| 662 | if (!selectedNeuron->inputs.empty()) |
---|
| 663 | { |
---|
| 664 | int inputCount = selectedNeuron->inputs.size(); |
---|
| 665 | auto it = selectedNeuron->inputs.begin(); |
---|
| 666 | advance(it, rndUint(inputCount)); |
---|
| 667 | selectedNeuron->inputs.erase(it->first); |
---|
| 668 | return true; |
---|
| 669 | } |
---|
| 670 | } |
---|
| 671 | return false; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | bool GenoOper_fS::changeNeuroParam(fS_Genotype &geno) |
---|
| 675 | { |
---|
[1000] | 676 | vector < fS_Neuron * > neurons = geno.getAllNeurons(); |
---|
[958] | 677 | if (neurons.empty()) |
---|
| 678 | return false; |
---|
| 679 | |
---|
| 680 | fS_Neuron *neu = neurons[rndUint(neurons.size())]; |
---|
[969] | 681 | return GenoOperators::mutateRandomNeuroClassProperty(neu); |
---|
[1000] | 682 | } |
---|
| 683 | |
---|
[1030] | 684 | bool GenoOper_fS::mutateScaleParam(Node *node, string key, bool ensureCircleSection) |
---|
[1000] | 685 | { |
---|
[1006] | 686 | double oldValue = node->getParam(key); |
---|
| 687 | double volume = node->calculateVolume(); |
---|
[1000] | 688 | double valueAtMinVolume, valueAtMaxVolume; |
---|
[1030] | 689 | if(key == SCALE) |
---|
[1000] | 690 | { |
---|
| 691 | valueAtMinVolume = oldValue * std::cbrt(Model::getMinPart().volume / volume); |
---|
| 692 | valueAtMaxVolume = oldValue * std::cbrt(Model::getMaxPart().volume / volume); |
---|
| 693 | } |
---|
| 694 | else |
---|
| 695 | { |
---|
| 696 | valueAtMinVolume = oldValue * Model::getMinPart().volume / volume; |
---|
| 697 | valueAtMaxVolume = oldValue * Model::getMaxPart().volume / volume; |
---|
| 698 | } |
---|
| 699 | |
---|
[1017] | 700 | double min = std::max(Node::minValues.at(key), valueAtMinVolume); |
---|
| 701 | double max = std::min(Node::maxValues.at(key), valueAtMaxVolume); |
---|
[1030] | 702 | double stdev = (max - min) * node->genotypeParams.paramMutationStrength; |
---|
[1000] | 703 | |
---|
[1030] | 704 | node->params[key] = GenoOperators::mutateCreep('f', node->getParam(key), min, max, stdev, true); |
---|
[1000] | 705 | |
---|
[1030] | 706 | if (!ensureCircleSection || node->isPartScaleValid()) |
---|
[1000] | 707 | return true; |
---|
| 708 | else |
---|
| 709 | { |
---|
[1006] | 710 | node->params[key] = oldValue; |
---|
[1000] | 711 | return false; |
---|
| 712 | } |
---|
| 713 | } |
---|