// This file is a part of Framsticks SDK. http://www.framsticks.com/ // Copyright (C) 1999-2019 Maciej Komosinski and Szymon Ulatowski. // See LICENSE.txt for details. #include "fL_oper.h" #include #include "../fH/fH_oper.h" #include #define FIELDSTRUCT Geno_fL static ParamEntry GENOfLparam_tab[] = { {"Genetics: fL", 3, FL_OPCOUNT + FL_MUTGROUPSCOUNT + FL_CHG_COUNT + 2 + FL_ADD_COUNT, }, {"Genetics: fL: Probabilities of mutating axiom and rules", }, {"Genetics: fL: Probabilities of mutation types", }, {"fL_maxdefinedwords", 0, 0, "Maximum number of defined words", "d 0 100 10", FIELD(maxdefinedwords), "Maximum number of words that can be defined in L-System", }, {"fL_axm_mut_prob", 1, 0, "Axiom mutation", "f 0 1 0.2", FIELD(groupprobabilities[FL_AXM_WORD_MUT_PROB]), "Probability of performing mutation operations on axiom", }, {"fL_rul_mut_prob", 1, 0, "Rule's successor mutation", "f 0 1 0.8", FIELD(groupprobabilities[FL_RUL_WORD_MUT_PROB]), "Probability of performing mutation operations on the successor of random rule", }, {"fL_mut_addition", 2, 0, "Addition of word to sequence", "f 0 1 0.2", FIELD(operations[FL_ADD_WORD]), "Probability of adding random existing word to the axiom or one of successors", }, {"fL_mut_add_stick", 2, 0, " - addition of stick", "f 0 1 0.2", FIELD(addtypes[FL_ADD_STICK]), "Probability of adding stick", }, {"fL_mut_add_neuro", 2, 0, " - addition of neuron", "f 0 1 0.2", FIELD(addtypes[FL_ADD_NEURO]), "Probability of adding neuron", }, {"fL_mut_add_conn", 2, 0, " - addition of neuron connection", "f 0 1 0.2", FIELD(addtypes[FL_ADD_CONN]), "Probability of adding connection", }, {"fL_mut_add_rot", 2, 0, " - addition of rotation words", "f 0 1 0.2", FIELD(addtypes[FL_ADD_ROT]), "Probability of adding one of rotation words", }, {"fL_mut_add_branch", 2, 0, " - addition of branched stick", "f 0 1 0.2", FIELD(addtypes[FL_ADD_BRANCH]), "Probability of adding branch with rotation and stick", }, {"fL_mut_add_other", 2, 0, " - addition of defined words", "f 0 1 0.4", FIELD(addtypes[FL_ADD_OTHER]), "Probability of adding other word, defined in genotype", }, {"fL_mut_worddefaddition", 2, 0, "Addition of new word definition", "f 0 1 0.05", FIELD(operations[FL_ADD_WDEF]), "Probability of adding new word definition to the genotype", }, {"fL_mut_ruleaddition", 2, 0, "Addition of new rule definition", "f 0 1 0.1", FIELD(operations[FL_ADD_RULE]), "Probability of adding new rule definition for existing word", }, {"fL_mut_rulecond", 2, 0, "Modification of rule condition", "f 0 1 0.1", FIELD(operations[FL_CHG_COND]), "Probability of modifying random rule condition", }, {"fL_mut_changeword", 2, 0, "Change of random word", "f 0 1 0.3", FIELD(operations[FL_CHG_WORD]), "Probability of changing word name or formula of a random word from axiom or one of successors", }, {"fL_mut_changeword_formula", 2, 0, " - change of formula", "f 0 1 0.7", FIELD(chgoperations[FL_CHG_WORD_FORMULA]), "Probability of changing formula in word", }, {"fL_mut_changeword_name", 2, 0, " - change of name", "f 0 1 0.3", FIELD(chgoperations[FL_CHG_WORD_NAME]), "Probability of changing name in word", }, {"fL_mut_changeiter", 2, 0, "Change of L-System iteration", "f 0 1 0.3", FIELD(operations[FL_CHG_ITER]), "Probability of changing number of iterations of L-Systems", }, {"fL_mut_changeiter_step", 2, 0, "Step of iteration changing", "f 0 1 1.0", FIELD(iterchangestep), "Minimal step that should be used for changing iterations in L-Systems", }, {"fL_mut_deletion", 2, 0, "Deletion of random word", "f 0 1 0.2", FIELD(operations[FL_DEL_WORD]), "Probability of deleting random word from axiom or random successor (also deletes rule if there is only one word in successor)", }, { 0, }, }; #undef FIELDSTRUCT Geno_fL::Geno_fL() { par.setParamTab(GENOfLparam_tab); par.select(this); par.setDefault(); supported_format = 'L'; iterchangestep = 1.0; maxdefinedwords = 10; } int Geno_fL::checkValidity(const char *geno, const char *genoname) { LoggerToMemory eh(LoggerBase::Enable | LoggerToMemory::StoreAllMessages, LOG_WARN); fL_Builder builder(false, false); int err = builder.parseGenotype(geno); if (err != 0) { return err; } if (builder.countSticksInSequence(&builder.genotype) == 0) { return GENOPER_OPFAIL; } double neededtime = 0; Model *m = builder.developModel(neededtime); if (!m) { return GENOPER_OPFAIL; } if (!m->isValid()) { delete m; return GENOPER_OPFAIL; } delete m; return GENOPER_OK; } int Geno_fL::validate(char *&geno, const char *genoname) { LoggerToMemory eh(LoggerBase::Enable | LoggerToMemory::StoreAllMessages, LOG_WARN); fL_Builder builder(false, false); int err = builder.parseGenotype(geno); if (err != 0) { return err; } double neededtime = 0; Model *m = builder.developModel(neededtime); if (!m->isValid()) { delete m; return GENOPER_OPFAIL; } if (neededtime != builder.time) { builder.time = neededtime; free(geno); geno = strdup(builder.toString().c_str()); delete m; return GENOPER_OK; } delete m; return GENOPER_OK; } bool Geno_fL::addWord(std::list* list, fL_Word *definition, std::list::iterator it) { fL_Word *newword = new fL_Word(); *newword = *definition; // if word has parameters if (newword->npar > 0) { // create ParamObject that will hold parameter data newword->data = ParamObject::makeObject(newword->tab); Param par(newword->tab); par.select(newword->data); par.setDefault(); for (int i = 0; i < par.getPropCount(); i++) { newword->parevals.push_back(NULL); } if (newword->name.startsWith("rot")) { double rot = rndDouble(2); MathEvaluation *eval = new MathEvaluation(0); eval->convertString(SString::valueOf(rot).c_str()); newword->parevals[0] = eval; } else if (newword->name == "N") { SString det; NeuroClass *cls = getRandomNeuroClass(); det = cls->getName(); Geno_fH::mutateNeuronProperties(det); par.setStringById(FL_PE_NEURO_DET, det); } else if (newword->name == "C") { MathEvaluation *eval = new MathEvaluation(0); eval->convertString(SString::valueOf(rndDouble(2) - 1).c_str()); newword->parevals[0] = eval; } } list->insert(it, newword); return true; } std::list* Geno_fL::selectRandomSequence(fL_Builder *creature, int &numparams, int &ruleid) { std::list *list = NULL; int axiomorrules = roulette(groupprobabilities, FL_MUTGROUPSCOUNT); bool axiomused = axiomorrules == FL_AXM_WORD_MUT_PROB || creature->rules.size() == 0; if (axiomused) { list = &creature->genotype; numparams = 0; ruleid = -1; } else { int rid = rndUint(creature->rules.size()); list = &creature->rules[rid]->objsucc; numparams = creature->rules[rid]->objpred->npar; ruleid = rid; } return list; } fL_Word* Geno_fL::randomWordDefinition(fL_Builder *creature, int method) { if (method == FL_ADD_OTHER && creature->builtincount < (int)creature->words.size()) { return creature->words[creature->wordnames[creature->builtincount + rndUint((int)creature->words.size() - creature->builtincount)]]; } else { if (method == FL_ADD_OTHER) // we should be able to select stick, neuro or conn { double alttypes[FL_ADD_COUNT - 2]; alttypes[FL_ADD_STICK] = addtypes[FL_ADD_STICK]; alttypes[FL_ADD_NEURO] = addtypes[FL_ADD_NEURO]; alttypes[FL_ADD_CONN] = addtypes[FL_ADD_CONN]; alttypes[FL_ADD_ROT] = addtypes[FL_ADD_ROT]; method = roulette(alttypes, FL_ADD_COUNT - 2); } switch (method) { case FL_ADD_STICK: return creature->words["S"]; case FL_ADD_NEURO: if (getActiveNeuroClassCount() == 0) return creature->words["S"]; else return creature->words["N"]; case FL_ADD_CONN: return creature->words["C"]; case FL_ADD_ROT: { int rottype = rndUint(3); switch (rottype) { case 0: return creature->words["rotX"]; case 1: return creature->words["rotY"]; case 2: return creature->words["rotZ"]; } break; } case FL_ADD_BRANCH: // return NULL break; } } return NULL; } void Geno_fL::deleteBranch(std::list *list, std::list::iterator openbranchposition) { fL_Branch *branch = (fL_Branch *)(*openbranchposition); if (branch->btype == fL_Branch::BranchType::OPEN) { int bcount = 1; delete (*openbranchposition); openbranchposition = list->erase(openbranchposition); for (; openbranchposition != list->end(); openbranchposition++) { if ((*openbranchposition)->type == fLElementType::BRANCH) { branch = (fL_Branch *)(*openbranchposition); if (branch->btype == fL_Branch::BranchType::OPEN) { bcount++; } else { bcount--; if (bcount == 0) { delete branch; list->erase(openbranchposition); break; } } } } } else { openbranchposition++; if (openbranchposition != list->end()) { delete (*openbranchposition); list->erase(openbranchposition); } } } int Geno_fL::mutate(char *&geno, float& chg, int &method) { fL_Builder *creature = new fL_Builder(false, false); if (creature->parseGenotype(geno) != 0) { delete creature; return GENOPER_OPFAIL; } int before = creature->countWordsInLSystem(); method = roulette(operations, FL_OPCOUNT); switch (method) { case FL_CHG_ITER: { if (rndUint(2) == 0) { creature->time = creature->time + iterchangestep <= ExtValue::getDouble(FL_MAXITER) ? creature->time + iterchangestep : creature->time - iterchangestep; } else { creature->time = creature->time - iterchangestep >= 0 ? creature->time - iterchangestep : creature->time + iterchangestep; } break; } case FL_CHG_COND: { if (creature->rules.size() > 0) { int ruleid = rndUint(creature->rules.size()); if (!creature->rules[ruleid]->condeval) { creature->rules[ruleid]->condeval = new MathEvaluation(creature->rules[ruleid]->objpred->npar); } creature->rules[ruleid]->condeval->mutateConditional(); break; } // if there are no rules - create one } [[fallthrough]]; case FL_ADD_RULE: { std::unordered_map::iterator pred = creature->words.begin(); std::vector wordswithnorules; for (; pred != creature->words.end(); pred++) { if (!pred->second->builtin) { bool norules = true; for (fL_Rule * r : creature->rules) { if (pred->second->name == r->objpred->name && pred->second->npar == r->objpred->npar) { norules = false; break; } } if (norules) { wordswithnorules.push_back(pred->second); } } } if (wordswithnorules.size() > 0) { int predid = rndUint(wordswithnorules.size()); fL_Rule *newrule = new fL_Rule(0,0); fL_Word *pred = new fL_Word(); *pred = *wordswithnorules[predid]; newrule->objpred = pred; fL_Word *initdef = randomWordDefinition(creature, roulette(addtypes, FL_ADD_COUNT - 1)); // -1 to avoid branching addWord(&newrule->objsucc, initdef, newrule->objsucc.begin()); creature->rules.push_back(newrule); break; } else if (creature->rules.size() > 0) { int ruleid = rndUint(creature->rules.size()); fL_Rule *newrule = new fL_Rule(0, 0); fL_Word *pred = new fL_Word(); *pred = *creature->rules[ruleid]->objpred; newrule->objpred = pred; if (creature->rules[ruleid]->condeval) { std::string formula = ""; creature->rules[ruleid]->condeval->RPNToInfix(formula); if (formula.find("1.0-(") != 0) { std::string res = "1.0-("; res += formula; res += ")"; newrule->condeval = new MathEvaluation(pred->npar); newrule->condeval->convertString(res); } else { newrule->condeval = new MathEvaluation(pred->npar); newrule->condeval->mutateConditional(); } } else { newrule->condeval = new MathEvaluation(pred->npar); newrule->condeval->mutateConditional(); } fL_Word *worddef = randomWordDefinition(creature, roulette(addtypes, FL_ADD_COUNT - 1)); addWord(&newrule->objsucc, worddef, newrule->objsucc.begin()); creature->rules.push_back(newrule); break; } // if there are no words, from which rules can be formed, then add one } [[fallthrough]]; case FL_ADD_WDEF: { if (creature->countDefinedWords() <= maxdefinedwords) { int npar = rndUint(ExtValue::getInt(FL_MAXPARAMS, false)); for (int i = 0; i < maxdefinedwords; i++) { std::string name = "w"; name += std::to_string(i); if (creature->words.find(name) == creature->words.end()) { fL_Word *word = new fL_Word(false, 0, 0); word->npar = npar; word->name = name.c_str(); word->processDefinition(creature); break; } } break; } //no break at the end of case - if there is too many words, then // deletion should be performed } [[fallthrough]]; case FL_DEL_WORD: { int numpars = 0; int ruleid = 0; std::list *list = selectRandomSequence(creature, numpars, ruleid); if (ruleid == -1 && creature->countSticksInSequence(list) == 1) { if (list->size() > 1) { int rndid = rndUint(list->size() - 1); int j = 0; std::list::iterator it = list->begin(); if ((*it)->name == "S") { it++; } while (it != list->end() && j < rndid && ((*it)->name == "S")) { if ((*it)->name != "S") { j++; } it++; } if (it != list->end()) { if ((*it)->type == fLElementType::BRANCH) { deleteBranch(list, it); } else { delete (*it); list->erase(it); } break; } // else add word } // else add word } else { int rndid = rndUint(list->size()); std::list::iterator it = list->begin(); std::advance(it, rndid); if ((*it)->type == fLElementType::BRANCH) { deleteBranch(list, it); } else { delete (*it); list->erase(it); } if (ruleid > -1 && creature->rules[ruleid]->objsucc.size() == 0) { delete creature->rules[ruleid]; creature->rules.erase(creature->rules.begin() + ruleid); } break; } // if no words available, then add word } [[fallthrough]]; case FL_ADD_WORD: { int numpars = 0; int tmp = 0; std::list *list = selectRandomSequence(creature, numpars, tmp); int rndid = rndUint(list->size()); std::list::iterator it = list->begin(); std::advance(it, rndid); int meth = roulette(addtypes, FL_ADD_COUNT); if (tmp == -1) { // if sequence is axiom and it does not have non-builtin words bool hasdefined = false; for (std::list::iterator elem = list->begin(); elem != list->end(); elem++) { if (!(*elem)->builtin) { hasdefined = true; break; } } if (!hasdefined) { meth = FL_ADD_OTHER; } } if (meth != FL_ADD_BRANCH) { fL_Word *worddef = randomWordDefinition(creature, meth); addWord(list, worddef, it); } else { fL_Branch *start = new fL_Branch(fL_Branch::BranchType::OPEN, 0, 0); list->insert(it, start); int rottype = rndUint(2); switch (rottype) { case 0: addWord(list, creature->words["rotY"], it); case 1: addWord(list, creature->words["rotZ"], it); } addWord(list, creature->words["S"], it); fL_Branch *end = new fL_Branch(fL_Branch::BranchType::CLOSE, 0, 0); list->insert(it, end); } break; } case FL_CHG_WORD: { int numpars = 0; int tmp = 0; std::list *list = selectRandomSequence(creature, numpars, tmp); int rndid = rndUint(list->size()); std::list::iterator selectedword = list->begin(); std::advance(selectedword, rndid); if ((*selectedword)->type == fLElementType::BRANCH) { break; } int chgtype = roulette(chgoperations, FL_CHG_COUNT); if (creature->countSticksInSequence(list) == 1 && tmp == -1) // if sequence is axiom { fL_Word *worddef = randomWordDefinition(creature, roulette(addtypes, FL_ADD_COUNT - 1)); int numpars = 0; std::list *list = selectRandomSequence(creature, numpars, tmp); int rndid = rndUint(list->size()); std::list::iterator it = list->begin(); std::advance(it, rndid); addWord(list, worddef, it); break; } else if (chgtype == FL_CHG_WORD_NAME) { if ((*selectedword)->builtin) { delete (*selectedword); selectedword = list->erase(selectedword); fL_Word *worddef = randomWordDefinition(creature, roulette(addtypes, FL_ADD_COUNT - 1)); addWord(list, worddef, selectedword); } else { std::vector available; for (std::unordered_map::iterator wit = creature->words.begin(); wit != creature->words.end(); wit++) { if ((*selectedword)->npar == wit->second->npar && (*selectedword)->name != wit->second->name && !wit->second->builtin) { available.push_back(wit->second); } } if (available.size() > 0) { int newnameid = rndUint(available.size()); (*selectedword)->name = available[newnameid]->name; } else { delete (*selectedword); selectedword = list->erase(selectedword); fL_Word *worddef = randomWordDefinition(creature, roulette(addtypes, FL_ADD_COUNT - 1)); addWord(list, worddef, selectedword); } } } else { if ((*selectedword)->npar > 0) { int randeval = rndUint((*selectedword)->npar); Param par((*selectedword)->tab, (*selectedword)->data); if ((*selectedword)->builtin && (*selectedword)->name == "N" && strcmp(par.id(randeval), FL_PE_NEURO_DET) == 0) { SString res = par.getStringById(FL_PE_NEURO_DET); Geno_fH::mutateNeuronProperties(res); par.setStringById(FL_PE_NEURO_DET, res); } else if ((*selectedword)->builtin && (*selectedword)->name == "C" && strcmp(par.id(randeval), FL_PE_CONN_ATTR) == 0) { SString strattractor = par.getStringById(FL_PE_CONN_ATTR); if (strattractor.len() > 0) { fL_Word *w = NULL; creature->createWord(strattractor, w, numpars, 0, 0); // mutate attractor parameter if (w->npar > 0) { int rndattr = rndUint(w->npar); if (!w->parevals[rndattr]) { w->parevals[rndattr] = new MathEvaluation(numpars); } w->parevals[rndattr]->mutate(false, false); } strattractor = w->stringify(true); par.setStringById(FL_PE_CONN_ATTR, strattractor); delete w; } else { if (creature->builtincount < (int)creature->words.size()) { fL_Word *wdef = randomWordDefinition(creature, FL_ADD_OTHER); fL_Word *w = new fL_Word(); *w = *wdef; w->data = ParamObject::makeObject(w->tab); Param apar(w->tab); apar.select(w->data); apar.setDefault(); if (w->npar > 0) { int rndattr = rndUint(w->npar); for (int i = 0; i < w->npar; i++) { if (i == rndattr) { MathEvaluation *ev = new MathEvaluation(numpars); ev->mutate(false, false); w->parevals.push_back(ev); } else { w->parevals.push_back(NULL); } } } strattractor = w->stringify(false); par.setStringById(FL_PE_CONN_ATTR, strattractor); delete w; } } } else { if (!(*selectedword)->parevals[randeval]) { (*selectedword)->parevals[randeval] = new MathEvaluation(numpars); } (*selectedword)->parevals[randeval]->mutate(false, iterchangestep != 1.0); } } } break; } } free(geno); geno = strdup(creature->toString().c_str()); chg = (double)abs(before - creature->countWordsInLSystem()) / before; delete creature; return GENOPER_OK; } fL_Word* Geno_fL::getAppropriateWord(fL_Builder *from, fL_Builder *to, fL_Word *fromword, std::unordered_map &map) { if (fromword->name == "[" || fromword->name == "]") // if words are branching words { fL_Branch *newword = new fL_Branch(fromword->name == "[" ? fL_Branch::BranchType::OPEN : fL_Branch::BranchType::CLOSE, 0, 0); return newword; } if (fromword->builtin) { fL_Word *newword = new fL_Word(); (*newword) = (*to->words[fromword->name.c_str()]); return newword; } if (map.find(fromword->name.c_str()) != map.end()) // if word is already mapped { fL_Word *newword = new fL_Word(); (*newword) = (*to->words[map[fromword->name.c_str()]]); return newword; } else if (to->words.find(fromword->name.c_str()) != to->words.end() && to->words[fromword->name.c_str()]->npar == fromword->npar) // if there is already same word with same number of parameters { fL_Word *newword = new fL_Word(); map[fromword->name.c_str()] = fromword->name.c_str(); (*newword) = (*to->words[map[fromword->name.c_str()]]); return newword; } for (std::unordered_map::iterator it = to->words.begin(); it != to->words.end(); it++) { // find word with same number of parameters if (fromword->npar == it->second->npar && map.find(fromword->name.c_str()) == map.end() && !it->second->builtin) { // if there is a word with same number of parameters map[fromword->name.c_str()] = it->second->name.c_str(); fL_Word *newword = new fL_Word(); (*newword) = (*it->second); return newword; } } fL_Word *newworddef = new fL_Word(); (*newworddef) = (*fromword); newworddef->parevals.clear(); if (to->words.find(newworddef->name.c_str()) != to->words.end()) { int i = 0; while (true) { std::string name = "w"; name += std::to_string(i); if (to->words.find(name) == to->words.end()) { newworddef->name = name.c_str(); break; } i++; } } newworddef->processDefinition(to); map[fromword->name.c_str()] = newworddef->name.c_str(); fL_Word *newword = new fL_Word(); (*newword) = (*to->words[map[fromword->name.c_str()]]); return newword; } void Geno_fL::migrateRandomRules(fL_Builder *from, fL_Builder *to, int numselrules) { std::unordered_map map; if (from->rules.size() > 0) { for (int i = 0; i < numselrules; i++) { int rulid = rndUint(from->rules.size()); fL_Rule *rul = from->rules[rulid]; fL_Rule *newrule = new fL_Rule(0, 0); newrule->objpred = getAppropriateWord(from, to, rul->objpred, map); for (fL_Word *w : rul->objsucc) { fL_Word *el = getAppropriateWord(from, to, w, map); if (el->type == fLElementType::BRANCH) { newrule->objsucc.push_back(el); continue; } Param origpar(w->tab); origpar.select(w->data); el->data = ParamObject::makeObject(el->tab); Param par(el->tab); par.select(el->data); par.setDefault(); for (int i = 0; i < el->npar; i++) { std::string form; if (w->builtin && w->name == "N" && strcmp(par.id(i), FL_PE_NEURO_DET) == 0) { SString res = origpar.getStringById(FL_PE_NEURO_DET); par.setStringById(FL_PE_NEURO_DET, res); el->parevals.push_back(NULL); } else if (w->builtin && w->name == "C" && strcmp(par.id(i), FL_PE_CONN_ATTR) == 0) { SString strattractor = origpar.getStringById(FL_PE_CONN_ATTR); if (strattractor.len() > 0) { fL_Word *tmp = NULL; from->createWord(strattractor, tmp, newrule->objpred->npar, 0, 0); fL_Word *newsuccword = getAppropriateWord(from, to, tmp, map); newsuccword->data = ParamObject::makeObject(el->tab); newsuccword->parevals = tmp->parevals; tmp->parevals.clear(); strattractor = newsuccword->stringify(true); par.setStringById(FL_PE_CONN_ATTR, strattractor); delete newsuccword; delete tmp; } par.setStringById(FL_PE_CONN_ATTR, strattractor); el->parevals.push_back(NULL); } else if (w->parevals[i]) { MathEvaluation *eval = new MathEvaluation(newrule->objpred->npar); w->parevals[i]->RPNToInfix(form); eval->convertString(form); el->parevals.push_back(eval); } else { el->parevals.push_back(NULL); } } newrule->objsucc.push_back(el); } to->rules.push_back(newrule); } } } int Geno_fL::crossOver(char *&g1, char *&g2, float& chg1, float& chg2) { fL_Builder *creature1 = new fL_Builder(false, false); fL_Builder *creature1template = new fL_Builder(false, false); fL_Builder *creature2 = new fL_Builder(false, false); fL_Builder *creature2template = new fL_Builder(false, false); int count1 = creature1->countWordsInLSystem(); int count2 = creature2->countWordsInLSystem(); if (creature1->parseGenotype(g1) != 0 || creature2->parseGenotype(g2) != 0) { delete creature1; delete creature2; delete creature1template; delete creature2template; return GENOPER_OPFAIL; } creature1template->parseGenotype(g1); creature2template->parseGenotype(g2); int numselrules = 1 + rndUint(XOVER_MAX_MIGRATED_RULES); numselrules = numselrules < (int)creature1->rules.size() ? numselrules : (int)creature1->rules.size(); migrateRandomRules(creature1template, creature2, numselrules); numselrules = 1 + rndUint(XOVER_MAX_MIGRATED_RULES); numselrules = numselrules < (int)creature1->rules.size() ? numselrules : (int)creature1->rules.size(); migrateRandomRules(creature2template, creature1, numselrules); free(g1); free(g2); g1 = strdup(creature1->toString().c_str()); g2 = strdup(creature2->toString().c_str()); chg1 = (double)count1 / creature1->countWordsInLSystem(); chg1 = (double)count2 / creature2->countWordsInLSystem(); delete creature1; delete creature2; delete creature1template; delete creature2template; return GENOPER_OK; } uint32_t Geno_fL::style(const char *geno, int pos) { char ch = geno[pos]; uint32_t style = GENSTYLE_CS(0, GENSTYLE_STRIKEOUT); if (pos == 0 || geno[pos - 1] == '\n' || ch == ':') // single-character line definition { style = GENSTYLE_CS(GENCOLOR_TEXT, GENSTYLE_BOLD); } else if (strchr("()", ch) != NULL) { style = GENSTYLE_RGBS(50, 50, 50, GENSTYLE_BOLD); } else if (isalpha(ch)) // properties name { style = GENSTYLE_RGBS(0, 200, 0, GENSTYLE_BOLD); } else if (isdigit(ch) || strchr(",.=", ch)) // properties values { style = GENSTYLE_CS(GENCOLOR_TEXT, GENSTYLE_NONE); } else if (ch == '\"') { style = GENSTYLE_RGBS(200, 0, 0, GENSTYLE_BOLD); } return style; }