[797] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
| 2 | // Copyright (C) 1999-2018 Maciej Komosinski and Szymon Ulatowski. |
---|
| 3 | // See LICENSE.txt for details. |
---|
| 4 | |
---|
[780] | 5 | #include <string> |
---|
| 6 | #include <limits> |
---|
| 7 | #include <algorithm> |
---|
| 8 | #include <frams/util/multirange.h> |
---|
| 9 | #include <utility> |
---|
| 10 | #include "fH_general.h" |
---|
| 11 | |
---|
| 12 | using namespace std; |
---|
| 13 | #undef max //this macro is not needed here and it clashes with numeric_limits<>::max() |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | // Methods for loading handles |
---|
| 18 | |
---|
[797] | 19 | const char *fH_part_names[FH_PART_PROPS_COUNT] = { "dn", "fr", "ing", "as" }; |
---|
[780] | 20 | |
---|
[797] | 21 | const char *fH_joint_names[FH_JOINT_PROPS_COUNT] = { "stif", "rotstif", "stam" }; |
---|
[780] | 22 | |
---|
| 23 | void fH_Handle::loadProperties(Param par) |
---|
| 24 | { |
---|
| 25 | // loading values for vectors |
---|
| 26 | for (int i = 0; i < dimensions; i++) |
---|
| 27 | { |
---|
| 28 | first[i] = par.getDouble(i); |
---|
| 29 | second[i] = par.getDouble(dimensions + i); |
---|
| 30 | } |
---|
| 31 | obj = par.getSelected(); |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | void fH_Builder::addHandle(fH_Handle *handle) |
---|
| 35 | { |
---|
| 36 | switch (handle->type) |
---|
| 37 | { |
---|
| 38 | case fHBodyType::JOINT: |
---|
| 39 | sticks.push_back((fH_StickHandle*)handle); |
---|
| 40 | break; |
---|
| 41 | case fHBodyType::NEURON: |
---|
| 42 | neurons.push_back((fH_NeuronHandle*)handle); |
---|
| 43 | break; |
---|
| 44 | case fHBodyType::CONNECTION: |
---|
| 45 | connections.push_back((fH_ConnectionHandle*)handle); |
---|
| 46 | break; |
---|
| 47 | } |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | // Methods for saving properties of handles in params |
---|
| 51 | |
---|
| 52 | void fH_Handle::saveProperties(Param &par) |
---|
| 53 | { |
---|
| 54 | par.select(obj); |
---|
| 55 | for (int i = 0; i < dimensions; i++) |
---|
| 56 | { |
---|
| 57 | par.setDouble(i, first[i]); |
---|
| 58 | par.setDouble(dimensions + i, second[i]); |
---|
| 59 | } |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | // Destructor of Builder |
---|
| 63 | |
---|
| 64 | fH_Builder::~fH_Builder() |
---|
| 65 | { |
---|
| 66 | for (fH_StickHandle *obj : sticks) |
---|
| 67 | { |
---|
| 68 | delete obj; |
---|
| 69 | } |
---|
| 70 | sticks.clear(); |
---|
| 71 | for (fH_NeuronHandle *obj : neurons) |
---|
| 72 | { |
---|
| 73 | delete obj; |
---|
| 74 | } |
---|
| 75 | neurons.clear(); |
---|
| 76 | for (fH_ConnectionHandle *obj : connections) |
---|
| 77 | { |
---|
| 78 | delete obj; |
---|
| 79 | } |
---|
| 80 | connections.clear(); |
---|
| 81 | |
---|
| 82 | if (stickparamtab) ParamObject::freeParamTab(stickparamtab); |
---|
| 83 | if (neuronparamtab) ParamObject::freeParamTab(neuronparamtab); |
---|
| 84 | if (connectionparamtab) ParamObject::freeParamTab(connectionparamtab); |
---|
| 85 | |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | // Methods for parsing genotype |
---|
| 89 | |
---|
| 90 | void fH_Builder::prepareParams() |
---|
| 91 | { |
---|
| 92 | for (int i = 0; i < dimensions; i++) // preparing first vector fields |
---|
| 93 | { |
---|
| 94 | string x = "x"; |
---|
| 95 | x += to_string(i); |
---|
| 96 | stickmut.addProperty(NULL, x.c_str(), HANDLE_VECTOR_TYPE, x.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 97 | neuronmut.addProperty(NULL, x.c_str(), HANDLE_VECTOR_TYPE, x.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 98 | connectionmut.addProperty(NULL, x.c_str(), HANDLE_VECTOR_TYPE, x.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 99 | |
---|
| 100 | } |
---|
| 101 | for (int i = 0; i < dimensions; i++) // preparing second vector fields |
---|
| 102 | { |
---|
| 103 | string y = "y"; |
---|
| 104 | y += to_string(i); |
---|
| 105 | stickmut.addProperty(NULL, y.c_str(), HANDLE_VECTOR_TYPE, y.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 106 | neuronmut.addProperty(NULL, y.c_str(), HANDLE_VECTOR_TYPE, y.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 107 | connectionmut.addProperty(NULL, y.c_str(), HANDLE_VECTOR_TYPE, y.c_str(), "", PARAM_CANOMITNAME, 0, -1); |
---|
| 108 | |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | Part p; |
---|
[797] | 112 | for (int i = 0; i < FH_PART_PROPS_COUNT; i++) |
---|
[780] | 113 | { |
---|
| 114 | stickmut.addProperty(&p.properties().getParamTab()[p.properties().findId(fH_part_names[i]) + p.properties().getGroupCount()], -1); |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | Joint j; |
---|
[797] | 118 | for (int i = 0; i < FH_JOINT_PROPS_COUNT; i++) |
---|
[780] | 119 | { |
---|
| 120 | stickmut.addProperty(&j.properties().getParamTab()[j.properties().findId(fH_joint_names[i]) + j.properties().getGroupCount()], -1); |
---|
| 121 | } |
---|
| 122 | stickmut.addProperty(NULL, "l", STICKH_LENGTH_TYPE, "length", "", 0, 0, -1); |
---|
| 123 | |
---|
| 124 | Neuro n; |
---|
[797] | 125 | neuronmut.addProperty(&n.properties().getParamTab()[n.properties().findId(FH_PE_NEURO_DET) + n.properties().getGroupCount()], -1); |
---|
[780] | 126 | |
---|
| 127 | Param tmp(f0_neuroconn_paramtab, NULL); |
---|
[797] | 128 | connectionmut.addProperty(&tmp.getParamTab()[tmp.findId(FH_PE_CONN_WEIGHT) + tmp.getGroupCount()], -1); |
---|
[780] | 129 | |
---|
| 130 | stickparamtab = ParamObject::makeParamTab((ParamInterface *)&stickmut, 0, 0, stickmut.firstMutableIndex()); |
---|
| 131 | neuronparamtab = ParamObject::makeParamTab((ParamInterface *)&neuronmut, 0, 0, neuronmut.firstMutableIndex()); |
---|
| 132 | connectionparamtab = ParamObject::makeParamTab((ParamInterface *)&connectionmut, 0, 0, connectionmut.firstMutableIndex()); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | int fH_Builder::processLine(SString line, int linenumber, int begin, int end) |
---|
| 136 | { |
---|
| 137 | // Firstly, method determines if line describes joint, neuron or neural connection |
---|
| 138 | // and prepares corresponding ParamTab |
---|
| 139 | fH_Handle *handle = NULL; |
---|
| 140 | ParamEntry *tab = NULL; |
---|
| 141 | if (line.startsWith("j:")) //joint |
---|
| 142 | { |
---|
| 143 | handle = new fH_StickHandle(dimensions, begin, end); |
---|
| 144 | tab = stickparamtab; |
---|
| 145 | } |
---|
| 146 | else if (line.startsWith("n:")) //neuron |
---|
| 147 | { |
---|
| 148 | handle = new fH_NeuronHandle(dimensions, begin, end); |
---|
| 149 | tab = neuronparamtab; |
---|
| 150 | } |
---|
| 151 | else if (line.startsWith("c:")) //connection |
---|
| 152 | { |
---|
| 153 | handle = new fH_ConnectionHandle(dimensions, begin, end); |
---|
| 154 | tab = connectionparamtab; |
---|
| 155 | } |
---|
| 156 | else // could not determine type of a handle |
---|
| 157 | { |
---|
| 158 | string message = "Cannot determine handle type at line: " + to_string(linenumber); |
---|
| 159 | logMessage("fH_Builder", "processLine", LOG_ERROR, message.c_str()); |
---|
| 160 | return begin; |
---|
| 161 | } |
---|
| 162 | line = line.substr(2); // skip of "j:", "c:" or "n:" |
---|
| 163 | |
---|
| 164 | // Secondly, ParamObject for holding handle properties is created |
---|
| 165 | void *obj = ParamObject::makeObject(tab); |
---|
| 166 | Param par(tab, obj); |
---|
| 167 | par.setDefault(); |
---|
| 168 | ParamInterface::LoadOptions opts; |
---|
| 169 | |
---|
| 170 | // After preparing Param objects, vector values and body properties are parsed |
---|
| 171 | par.load(ParamInterface::FormatSingleLine, line, &opts); |
---|
| 172 | |
---|
| 173 | // If parsing failed, method writes error message and ends processing |
---|
| 174 | if (opts.parse_failed) |
---|
| 175 | { |
---|
| 176 | string message = "Error in parsing handle parameters at line: " + to_string(linenumber); |
---|
| 177 | logMessage("fH_Builder", "processLine", LOG_ERROR, message.c_str()); |
---|
| 178 | delete handle; |
---|
| 179 | ParamObject::freeObject(obj); |
---|
| 180 | return begin; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | // If parsing ended successfully, parsed properties are loaded into handle fields |
---|
| 184 | handle->loadProperties(par); |
---|
| 185 | |
---|
| 186 | // In the end, ready handle is stored in an appropriate vector |
---|
| 187 | addHandle(handle); |
---|
| 188 | return 0; |
---|
| 189 | } |
---|
| 190 | |
---|
[803] | 191 | int fH_Builder::parseGenotype(const SString &genotype) |
---|
[780] | 192 | { |
---|
| 193 | // Firstly, number of dimensions is parsed |
---|
| 194 | int pos = 0; |
---|
| 195 | SString numdimensions; |
---|
| 196 | genotype.getNextToken(pos, numdimensions, '\n'); |
---|
| 197 | if (!ExtValue::parseInt(numdimensions.c_str(), dimensions, true, false)) |
---|
| 198 | { |
---|
| 199 | logMessage("fH_Builder", "parseGenotype", LOG_ERROR, "Could not parse number of dimensions"); |
---|
| 200 | return 1; |
---|
| 201 | } |
---|
| 202 | if (dimensions < 1) |
---|
| 203 | { |
---|
| 204 | logMessage("fH_Builder", "parseGenotype", LOG_ERROR, "Number of dimensions cannot be lower than 1"); |
---|
| 205 | return 1; |
---|
| 206 | } |
---|
| 207 | SString line; |
---|
| 208 | int linenumber = 2; |
---|
| 209 | |
---|
| 210 | // With known number of dimensions ParamTabs for handles are prepared |
---|
| 211 | prepareParams(); |
---|
| 212 | |
---|
| 213 | // After preparing Builder for parsing, each line is processed with processLine |
---|
| 214 | int lastpos = pos; |
---|
| 215 | while (genotype.getNextToken(pos, line, '\n')) |
---|
| 216 | { |
---|
| 217 | if (line.len() > 0) |
---|
| 218 | { |
---|
| 219 | int res = processLine(line, linenumber, lastpos, pos - 1); |
---|
| 220 | if (res != 0) |
---|
| 221 | { |
---|
| 222 | return res; |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | lastpos = pos; |
---|
| 226 | linenumber++; |
---|
| 227 | } |
---|
| 228 | if (sticks.size() == 0) |
---|
| 229 | { |
---|
| 230 | logMessage("fH_Builder", "parseGenotype", LOG_ERROR, "Genotype does not contain any stick"); |
---|
| 231 | return 1; |
---|
| 232 | } |
---|
| 233 | return 0; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | // Distance calculations |
---|
| 237 | |
---|
| 238 | double fH_Handle::dist(vector<double> left, vector<double> right) |
---|
| 239 | { |
---|
| 240 | double sum = 0; |
---|
| 241 | for (unsigned int i = 0; i < left.size(); i++) |
---|
| 242 | { |
---|
| 243 | sum += (left[i] - right[i]) * (left[i] - right[i]); |
---|
| 244 | } |
---|
| 245 | return sqrt(sum); |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | vector<double> fH_Handle::getVectorsAverage() |
---|
| 249 | { |
---|
| 250 | vector<double> result(dimensions, 0); |
---|
| 251 | for (int i = 0; i < dimensions; i++) |
---|
| 252 | { |
---|
| 253 | result[i] = (first[i] + second[i]) / 2; |
---|
| 254 | } |
---|
| 255 | return result; |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | double fH_StickHandle::distance(fH_Handle *right) |
---|
| 259 | { |
---|
| 260 | double distance = 0; |
---|
| 261 | switch (right->type) |
---|
| 262 | { |
---|
| 263 | case fHBodyType::JOINT: |
---|
| 264 | // distance is computed between second vector of current handle and first |
---|
| 265 | // vector of second handle |
---|
| 266 | distance = dist(second, right->first); |
---|
| 267 | break; |
---|
| 268 | case fHBodyType::NEURON: |
---|
| 269 | { |
---|
| 270 | // if neuron has to be connected to joint, then distance is calculated |
---|
| 271 | // between averages of both handles |
---|
| 272 | vector<double> avgs = getVectorsAverage(); |
---|
| 273 | vector<double> avgn = right->getVectorsAverage(); |
---|
| 274 | distance = dist(avgs, avgn); |
---|
| 275 | break; |
---|
| 276 | } |
---|
| 277 | case fHBodyType::CONNECTION: |
---|
| 278 | // it is impossible to calculate distance between Joint and Connection |
---|
| 279 | return numeric_limits<double>::quiet_NaN(); |
---|
| 280 | } |
---|
| 281 | return distance; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | double fH_NeuronHandle::distance(fH_Handle *right) |
---|
| 285 | { |
---|
| 286 | double distance = 0; |
---|
| 287 | switch (right->type) |
---|
| 288 | { |
---|
| 289 | case fHBodyType::JOINT: |
---|
| 290 | { |
---|
| 291 | // if neuron has to be connected to joint, then distance is calculated |
---|
| 292 | // between averages of both handles |
---|
| 293 | vector<double> avgs = right->getVectorsAverage(); |
---|
| 294 | vector<double> avgn = getVectorsAverage(); |
---|
| 295 | distance = dist(avgs, avgn); |
---|
| 296 | break; |
---|
| 297 | } |
---|
| 298 | case fHBodyType::CONNECTION: |
---|
| 299 | // this calculation is meant for input neuron - it compares second vector |
---|
| 300 | // of neuron and first vector of connection |
---|
| 301 | distance = dist(second, right->first); |
---|
| 302 | break; |
---|
| 303 | case fHBodyType::NEURON: |
---|
| 304 | // it is impossible to calculate distance between two Neurons |
---|
| 305 | return numeric_limits<double>::quiet_NaN(); |
---|
| 306 | } |
---|
| 307 | return distance; |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | double fH_NeuronHandle::distance(fH_StickHandle *right, bool first) |
---|
| 311 | { |
---|
| 312 | vector<double> avgn = getVectorsAverage(); |
---|
| 313 | double distance = 0; |
---|
| 314 | if (first) |
---|
| 315 | { |
---|
| 316 | distance = dist(avgn, right->firstparthandle); |
---|
| 317 | } |
---|
| 318 | else |
---|
| 319 | { |
---|
| 320 | distance = dist(avgn, right->secondparthandle); |
---|
| 321 | } |
---|
| 322 | return distance; |
---|
| 323 | } |
---|
| 324 | |
---|
| 325 | double fH_ConnectionHandle::distance(fH_Handle *right) |
---|
| 326 | { |
---|
| 327 | double distance = 0; |
---|
| 328 | switch (right->type) |
---|
| 329 | { |
---|
| 330 | case fHBodyType::NEURON: |
---|
| 331 | // this calculation is meant for output neuron - it compares second vector |
---|
| 332 | // of connection and first vector of neuron |
---|
| 333 | distance = dist(second, right->first); |
---|
| 334 | break; |
---|
| 335 | case fHBodyType::JOINT: |
---|
| 336 | case fHBodyType::CONNECTION: |
---|
| 337 | // it is impossible to calculate distance between Connection and other |
---|
| 338 | // Connection or Joint |
---|
| 339 | return numeric_limits<double>::quiet_NaN(); |
---|
| 340 | } |
---|
| 341 | return distance; |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | // Creature build functions |
---|
| 345 | |
---|
[821] | 346 | Part * fH_StickHandle::createPart(ParamEntry *tab, std::vector<fH_StickHandle *> *children, Model *model, bool createmapping) |
---|
[780] | 347 | { |
---|
| 348 | Param par(tab, obj); |
---|
[797] | 349 | double partprops[FH_PART_PROPS_COUNT]; |
---|
| 350 | for (int i = 0; i < FH_PART_PROPS_COUNT; i++) |
---|
[780] | 351 | { |
---|
| 352 | partprops[i] = par.getDouble(2 * getDimensions() + i); |
---|
| 353 | } |
---|
| 354 | |
---|
[821] | 355 | unsigned int stickscount = children->size() + 1; |
---|
[780] | 356 | |
---|
| 357 | MultiRange ranges; |
---|
| 358 | ranges.add(begin, end); |
---|
| 359 | |
---|
[821] | 360 | for (fH_StickHandle *child : (*children)) |
---|
[780] | 361 | { |
---|
| 362 | par.select(child->obj); |
---|
[797] | 363 | for (int i = 0; i < FH_PART_PROPS_COUNT; i++) |
---|
[780] | 364 | { |
---|
| 365 | partprops[i] += par.getDouble(2 * getDimensions() + i); |
---|
| 366 | } |
---|
| 367 | ranges.add(child->begin, child->end); |
---|
| 368 | } |
---|
| 369 | |
---|
[797] | 370 | for (int i = 0; i < FH_PART_PROPS_COUNT; i++) |
---|
[780] | 371 | { |
---|
| 372 | partprops[i] /= stickscount; |
---|
| 373 | } |
---|
| 374 | |
---|
| 375 | Part *newpart = new Part(); |
---|
| 376 | |
---|
| 377 | model->addPart(newpart); |
---|
| 378 | |
---|
| 379 | newpart->density = partprops[0]; |
---|
| 380 | newpart->friction = partprops[1]; |
---|
| 381 | newpart->ingest = partprops[2]; |
---|
| 382 | newpart->assim = partprops[3]; |
---|
| 383 | |
---|
| 384 | if (createmapping) newpart->addMapping(ranges); |
---|
| 385 | |
---|
| 386 | return newpart; |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | Joint* fH_StickHandle::createJoint(ParamEntry *tab, Model *model, bool createmapping) |
---|
| 390 | { |
---|
| 391 | Param par(tab, obj); |
---|
| 392 | if (firstpart == NULL || secondpart == NULL) |
---|
| 393 | { |
---|
| 394 | return NULL; |
---|
| 395 | } |
---|
| 396 | Joint *newjoint = new Joint(); |
---|
| 397 | |
---|
| 398 | model->addJoint(newjoint); |
---|
| 399 | |
---|
| 400 | newjoint->stif = par.getDoubleById("stif"); |
---|
| 401 | newjoint->rotstif = par.getDoubleById("rotstif"); |
---|
| 402 | newjoint->stamina = par.getDoubleById("stam"); |
---|
| 403 | newjoint->attachToParts(firstpart, secondpart); |
---|
| 404 | if (createmapping) newjoint->addMapping(IRange(begin, end)); |
---|
| 405 | return newjoint; |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | void fH_Builder::buildBody() |
---|
| 409 | { |
---|
| 410 | // stickconnections vector holds information about connections between sticks. |
---|
| 411 | // Left side of pair should hold pointer to stick that is connected with second |
---|
| 412 | // vector, and right side of pair should hold pointer to stick that is connected |
---|
| 413 | // with first vector |
---|
| 414 | stickconnections.clear(); |
---|
| 415 | |
---|
| 416 | // if body consists of single stick, just add it to body |
---|
| 417 | if (sticks.size() == 1) |
---|
| 418 | { |
---|
| 419 | stickconnections.push_back(pair<fH_StickHandle *, fH_StickHandle *>(NULL, sticks[0])); |
---|
| 420 | sticksorder.push_back(0); |
---|
| 421 | return; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | vector<bool> remainingsticks(sticks.size(), true); |
---|
| 425 | |
---|
| 426 | // first we find two handles that have minimal distances between their second |
---|
| 427 | // and first vector |
---|
| 428 | fH_StickHandle *left = sticks[0]; |
---|
| 429 | fH_StickHandle *right = sticks[1]; |
---|
| 430 | double mindist = left->distance(right); |
---|
| 431 | int leftid = 0; |
---|
| 432 | int rightid = 1; |
---|
| 433 | for (unsigned int i = 0; i < sticks.size(); i++) |
---|
| 434 | { |
---|
| 435 | for (unsigned int j = i + 1; j < sticks.size(); j++) |
---|
| 436 | { |
---|
| 437 | double distance = sticks[i]->distance(sticks[j]); |
---|
| 438 | if (distance < mindist) |
---|
| 439 | { |
---|
| 440 | mindist = distance; |
---|
| 441 | left = sticks[i]; |
---|
| 442 | right = sticks[j]; |
---|
| 443 | leftid = i; |
---|
| 444 | rightid = j; |
---|
| 445 | } |
---|
| 446 | distance = sticks[j]->distance(sticks[i]); |
---|
| 447 | if (distance < mindist) |
---|
| 448 | { |
---|
| 449 | mindist = distance; |
---|
| 450 | left = sticks[j]; |
---|
| 451 | right = sticks[i]; |
---|
| 452 | leftid = j; |
---|
| 453 | rightid = i; |
---|
| 454 | } |
---|
| 455 | } |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | // two found handles are the beginning of creature body |
---|
| 459 | stickconnections.push_back(pair<fH_StickHandle *, fH_StickHandle *>(NULL, left)); |
---|
| 460 | stickconnections.push_back(pair<fH_StickHandle *, fH_StickHandle *>(left, right)); |
---|
| 461 | |
---|
| 462 | // after selecting two handles as beginning of body, they are marked as used |
---|
| 463 | // in the list of remaining sticks |
---|
| 464 | remainingsticks[leftid] = false; |
---|
| 465 | remainingsticks[rightid] = false; |
---|
| 466 | |
---|
| 467 | sticksorder.push_back(leftid); |
---|
| 468 | sticksorder.push_back(rightid); |
---|
| 469 | |
---|
| 470 | // next stick is selected by minimum distance between first vector of its handle |
---|
| 471 | // and second vector of any existing StickHandle in body |
---|
| 472 | int remaining = sticks.size() - 2; |
---|
| 473 | while (remaining > 0) |
---|
| 474 | { |
---|
| 475 | leftid = -1; |
---|
| 476 | rightid = -1; |
---|
| 477 | mindist = numeric_limits<double>::max(); |
---|
| 478 | for (unsigned int i = 0; i < sticks.size(); i++) |
---|
| 479 | { |
---|
| 480 | // if stick is not already in |
---|
| 481 | if (remainingsticks[i]) |
---|
| 482 | { |
---|
| 483 | for (int stickid : sticksorder) |
---|
| 484 | { |
---|
| 485 | double distance = sticks[stickid]->distance(sticks[i]); |
---|
| 486 | if (distance < mindist) |
---|
| 487 | { |
---|
| 488 | mindist = distance; |
---|
| 489 | leftid = stickid; |
---|
| 490 | rightid = i; |
---|
| 491 | } |
---|
| 492 | } |
---|
| 493 | } |
---|
| 494 | } |
---|
| 495 | stickconnections.push_back(pair<fH_StickHandle *, fH_StickHandle *>(sticks[leftid], sticks[rightid])); |
---|
| 496 | remainingsticks[rightid] = false; |
---|
| 497 | sticksorder.push_back(rightid); |
---|
| 498 | remaining--; |
---|
| 499 | } |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | int fH_Builder::developBrain(Model *model, bool createmapping) |
---|
| 503 | { |
---|
| 504 | Param par(neuronparamtab, NULL); |
---|
| 505 | // First of all, neurons are attached to body |
---|
| 506 | for (fH_NeuronHandle *currneu : neurons) |
---|
| 507 | { |
---|
| 508 | par.select(currneu->obj); |
---|
| 509 | // create Neuro object and set details |
---|
| 510 | currneu->neuron = new Neuro(); |
---|
| 511 | SString det = par.getStringById("d"); |
---|
| 512 | if (det != "") |
---|
| 513 | { |
---|
| 514 | currneu->neuron->setDetails(det); |
---|
| 515 | } |
---|
| 516 | else |
---|
| 517 | { |
---|
| 518 | currneu->neuron->setDetails("N"); |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | // get class of neuron. If class with given name does not exist - return error |
---|
| 522 | NeuroClass *nclass = currneu->neuron->getClass(); |
---|
| 523 | if (!nclass) |
---|
| 524 | { |
---|
| 525 | SString msg = "NeuroClass given in details \""; |
---|
| 526 | msg += det + "\" does not exist"; |
---|
| 527 | logMessage("fH_Builder", "developBrain", LOG_ERROR, msg.c_str()); |
---|
[797] | 528 | delete currneu->neuron; |
---|
[780] | 529 | return -1; |
---|
| 530 | } |
---|
| 531 | // add neuron to model -> required before attaching to body part |
---|
| 532 | model->addNeuro(currneu->neuron); |
---|
| 533 | if (nclass->getPreferredLocation() == 2) // attach to Joint |
---|
| 534 | { |
---|
| 535 | // find stick that has closest average handle to average handle of |
---|
| 536 | // neuron |
---|
| 537 | double mindist = currneu->distance(sticks[0]); |
---|
| 538 | fH_StickHandle *minstick = sticks[0]; |
---|
| 539 | for (unsigned int i = 1; i < sticks.size(); i++) |
---|
| 540 | { |
---|
| 541 | double distance = currneu->distance(sticks[i]); |
---|
| 542 | if (distance < mindist) |
---|
| 543 | { |
---|
| 544 | mindist = distance; |
---|
| 545 | minstick = sticks[i]; |
---|
| 546 | } |
---|
| 547 | } |
---|
| 548 | currneu->neuron->attachToJoint(minstick->joint); |
---|
| 549 | } |
---|
| 550 | else if (nclass->getPreferredLocation() == 1) // attach to Part |
---|
| 551 | { |
---|
| 552 | // in the beginning we take first part of first stick to calculate |
---|
| 553 | // distance between them as initial minimal distance |
---|
| 554 | double mindist = currneu->distance(sticks[0], true); |
---|
| 555 | Part *minpart = sticks[0]->firstpart; |
---|
| 556 | for (unsigned int i = 0; i < sticks.size(); i++) |
---|
| 557 | { |
---|
| 558 | // after this we take only second parts of following sticks to |
---|
| 559 | // avoid repetition (thats why we start from i = 0) |
---|
| 560 | double distance = currneu->distance(sticks[i], false); |
---|
| 561 | if (distance < mindist) |
---|
| 562 | { |
---|
| 563 | mindist = distance; |
---|
| 564 | minpart = sticks[i]->secondpart; |
---|
| 565 | } |
---|
| 566 | } |
---|
| 567 | currneu->neuron->attachToPart(minpart); |
---|
| 568 | } |
---|
| 569 | if (createmapping) currneu->neuron->addMapping(IRange(currneu->begin, currneu->end)); |
---|
| 570 | model->checkpoint(); |
---|
| 571 | } |
---|
| 572 | |
---|
| 573 | par.setParamTab(connectionparamtab); |
---|
| 574 | // Secondly, connections are created |
---|
| 575 | for (fH_ConnectionHandle *currcon : connections) |
---|
| 576 | { |
---|
| 577 | par.select(currcon->obj); |
---|
| 578 | // Connection is created as follows: |
---|
| 579 | // beginneu ---> endneu |
---|
| 580 | // distance between beginneu and connection is calculated as distance |
---|
| 581 | // between second handle of beginneu and first handle of connection. |
---|
| 582 | // This is why calculation is written as beginneu->distance(currcon). |
---|
| 583 | // In case of connection and endneu distance between them is calculated |
---|
| 584 | // as distance between second handle of connection and first handle of |
---|
| 585 | // endneu. This is why calculation is written as currcon->distance(endneu). |
---|
| 586 | |
---|
| 587 | fH_NeuronHandle *beginneu = NULL; |
---|
| 588 | double mindist = numeric_limits<double>::max(); |
---|
| 589 | // find beginning of connection |
---|
| 590 | for (fH_NeuronHandle *neuron : neurons) |
---|
| 591 | { |
---|
| 592 | // These method checked earlier if all neurons have valid classes. |
---|
| 593 | // If a neuron does not have output, then it's skipped from comparison. |
---|
| 594 | // Otherwise: |
---|
| 595 | if (neuron->neuron->getClass()->getPreferredOutput() > 0) |
---|
| 596 | { |
---|
| 597 | double distance = neuron->distance(currcon); |
---|
| 598 | if (distance < mindist) |
---|
| 599 | { |
---|
| 600 | mindist = distance; |
---|
| 601 | beginneu = neuron; |
---|
| 602 | } |
---|
| 603 | } |
---|
| 604 | } |
---|
| 605 | // if there was no neuron that could begin connection, then return warning |
---|
| 606 | if (!beginneu) |
---|
| 607 | { |
---|
[797] | 608 | // due to often appearance of connection genes in fB encoding, this |
---|
| 609 | // log message is commented |
---|
| 610 | // logMessage("fH_Builder", "developBrain", LOG_DEBUG, "There are no available neurons with outputs, connection could not be established"); |
---|
[780] | 611 | continue; |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | fH_NeuronHandle *endneu = NULL; |
---|
| 615 | mindist = numeric_limits<double>::max(); |
---|
| 616 | // find ending of connection |
---|
| 617 | for (fH_NeuronHandle *neuron : neurons) |
---|
| 618 | { |
---|
| 619 | // Method checked earlier if all neurons have valid classes. |
---|
| 620 | // If neuron does not accept input or all inputs are already connected, |
---|
| 621 | // then it's skipped from comparison. |
---|
| 622 | // Otherwise: |
---|
| 623 | if (neuron->neuron->getClass()->getPreferredInputs() == -1 || |
---|
| 624 | neuron->neuron->getClass()->getPreferredInputs() > neuron->neuron->getInputCount()) |
---|
| 625 | { |
---|
| 626 | double distance = currcon->distance(neuron); |
---|
| 627 | if (distance < mindist) |
---|
| 628 | { |
---|
| 629 | mindist = distance; |
---|
| 630 | endneu = neuron; |
---|
| 631 | } |
---|
| 632 | } |
---|
| 633 | } |
---|
| 634 | // if there was no neuron that could end connection, then return warning |
---|
| 635 | if (!endneu) |
---|
| 636 | { |
---|
[797] | 637 | // due to often appearance of connection genes in fB encoding, this |
---|
| 638 | // log message is commented |
---|
| 639 | // logMessage("fH_Builder", "developBrain", LOG_DEBUG, "There are no available neurons with free inputs, connection could not be established"); |
---|
[780] | 640 | continue; |
---|
| 641 | } |
---|
| 642 | endneu->neuron->addInput(beginneu->neuron, par.getDoubleById("w")); |
---|
| 643 | if (createmapping) endneu->neuron->addMapping(IRange(currcon->begin, currcon->end)); |
---|
| 644 | model->checkpoint(); |
---|
| 645 | } |
---|
| 646 | return 0; |
---|
| 647 | } |
---|
| 648 | |
---|
| 649 | Pt3D fH_Builder::getNextDirection(int count, int number) |
---|
| 650 | { |
---|
| 651 | // In order to get evenly distributed sticks coming from the same Part method |
---|
| 652 | // uses algorithm for even distribution of points on a sphere. There are several |
---|
| 653 | // methods to perform this, usually they are iterative. This method introduced |
---|
| 654 | // below offers not fully accurate, yet quite satisfying results. This is |
---|
| 655 | // RSZ method (Rakhmanov, Saff and Zhou method), with use of the golden angle. |
---|
| 656 | // This method is based on distribution of points along spiral that covers sphere |
---|
| 657 | // surface. |
---|
| 658 | |
---|
| 659 | // Following method works partially on spherical coordinates (r and theta is used). |
---|
| 660 | // The Z coordinate is from Cartesian coordinate system. The golden angle is used |
---|
| 661 | // to "iterate" along spiral, while Z coordinate is used to move down the |
---|
| 662 | // sphere. |
---|
| 663 | |
---|
| 664 | double golden_angle = M_PI * (3.0 - sqrt(5)); |
---|
| 665 | double dz = 2.0 / (double)count; |
---|
| 666 | double z = 1 - ((double)number + 0.5) * dz; |
---|
| 667 | double r = sqrt(1 - z * z); |
---|
| 668 | double theta = golden_angle * number; |
---|
| 669 | Pt3D vec; |
---|
| 670 | // In the end X and Y coordinates are calculated with current values of |
---|
| 671 | // r and theta. Value z is already calculated |
---|
| 672 | vec.x = r * cos(theta); |
---|
| 673 | vec.y = r * sin(theta); |
---|
| 674 | vec.z = z; |
---|
| 675 | vec.normalize(); |
---|
| 676 | return vec; |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | Orient fH_Builder::getRotationMatrixToFitVector(Pt3D currdir, Pt3D expecteddir) |
---|
| 680 | { |
---|
| 681 | Orient res; |
---|
| 682 | // first method normalizes vectors for easy calculations |
---|
| 683 | currdir.normalize(); |
---|
| 684 | expecteddir.normalize(); |
---|
| 685 | double c = currdir.dotProduct(expecteddir); // dot product of both vectors |
---|
| 686 | // if the dot product of both vectors equals 0 |
---|
| 687 | if (c == 0) |
---|
| 688 | { |
---|
| 689 | res.x.x = -1; |
---|
| 690 | res.x.y = 0; |
---|
| 691 | res.x.z = 0; |
---|
| 692 | |
---|
| 693 | res.y.x = 0; |
---|
| 694 | res.y.y = -1; |
---|
| 695 | res.y.z = 0; |
---|
| 696 | |
---|
| 697 | res.z.x = 0; |
---|
| 698 | res.z.y = 0; |
---|
| 699 | res.z.z = -1; |
---|
| 700 | } |
---|
| 701 | Pt3D v = Pt3D(0); // cross product of both vectors |
---|
| 702 | v.x = currdir.y * expecteddir.z - currdir.z * expecteddir.y; |
---|
| 703 | v.y = currdir.z * expecteddir.x - currdir.x * expecteddir.z; |
---|
| 704 | v.z = currdir.x * expecteddir.y - currdir.y * expecteddir.x; |
---|
| 705 | |
---|
| 706 | // Rotation matrix that enables aligning currdir to expecteddir comes from |
---|
| 707 | // following calculation |
---|
| 708 | // R = I + [v]_x + ([v]_x)^2 / (1+c) |
---|
| 709 | // where [v]_x is the skew-symmetric cross-product matrix of v |
---|
| 710 | res.x.x = 1 - (v.y * v.y + v.z * v.z) / (1 + c); |
---|
| 711 | res.x.y = v.z + (v.x * v.y) / (1 + c); |
---|
| 712 | res.x.z = -v.y + (v.x * v.z) / (1 + c); |
---|
| 713 | res.y.x = -v.z + (v.x * v.y) / (1 + c); |
---|
| 714 | res.y.y = 1 - (v.x * v.x + v.z * v.z) / (1 + c); |
---|
| 715 | res.y.z = v.x + (v.y * v.z) / (1 + c); |
---|
| 716 | res.z.x = v.y + (v.x * v.z) / (1 + c); |
---|
| 717 | res.z.y = -v.x + (v.y * v.z) / (1 + c); |
---|
| 718 | res.z.z = 1 - (v.x * v.x + v.y * v.y) / (1 + c); |
---|
| 719 | |
---|
| 720 | return res; |
---|
| 721 | } |
---|
| 722 | |
---|
| 723 | Model* fH_Builder::buildModel(bool using_checkpoints) |
---|
| 724 | { |
---|
| 725 | Model *model = new Model(); |
---|
| 726 | |
---|
| 727 | // At first, floating sticks are connected |
---|
| 728 | buildBody(); |
---|
| 729 | |
---|
| 730 | model->open(using_checkpoints); |
---|
| 731 | |
---|
| 732 | // Secondly, parts and joints are created |
---|
| 733 | // For every stick in body, starting with initial |
---|
| 734 | Param par(stickparamtab, NULL); |
---|
| 735 | for (int currid : sticksorder) |
---|
| 736 | { |
---|
| 737 | fH_StickHandle *currstick = sticks[currid]; |
---|
| 738 | fH_StickHandle *parent = NULL; |
---|
| 739 | // find parent of current stick - it is first element of pair, in which |
---|
| 740 | // current stick is second |
---|
| 741 | for (pair<fH_StickHandle *, fH_StickHandle *> conn : stickconnections) |
---|
| 742 | { |
---|
| 743 | if (conn.second == currstick) |
---|
| 744 | { |
---|
| 745 | parent = conn.first; |
---|
| 746 | break; |
---|
| 747 | } |
---|
| 748 | } |
---|
| 749 | |
---|
| 750 | // if parent is NULL, then create Part with current stick properties and |
---|
| 751 | // location at (0,0,0) |
---|
| 752 | if (!parent) |
---|
| 753 | { |
---|
| 754 | vector<fH_StickHandle *> emptylist; |
---|
[821] | 755 | Part *firstpart = currstick->createPart(stickparamtab, &emptylist, model, createmapping); |
---|
[780] | 756 | firstpart->p = Pt3D(0); |
---|
| 757 | currstick->firstpart = firstpart; |
---|
| 758 | currstick->firstparthandle = currstick->first; // this is used to calculate later distance between |
---|
| 759 | model->checkpoint(); |
---|
| 760 | } |
---|
| 761 | else //otherwise first part of current stick is the second part of previous stick |
---|
| 762 | { |
---|
| 763 | currstick->firstpart = parent->secondpart; |
---|
| 764 | currstick->firstparthandle = parent->secondparthandle; |
---|
| 765 | } |
---|
| 766 | // position of second part depends on two things |
---|
| 767 | // 1. direction of previous joint |
---|
| 768 | // 2. how many sticks are connected to the same parent |
---|
| 769 | // default direction of growth (without parent) is (1,0,0) |
---|
| 770 | Pt3D direction(1, 0, 0); |
---|
| 771 | Pt3D secondposition(currstick->firstpart->p); |
---|
| 772 | // if parent does exist, then determine how many sticks are connected to |
---|
| 773 | // parent and distribute them evenly on a sphere surrounding second part |
---|
| 774 | if (parent) |
---|
| 775 | { |
---|
| 776 | // improved RSZ method creates vectors that starts in |
---|
| 777 | // center of sphere (which will act as shared part), so direction |
---|
| 778 | // calculated below should point from shared part to previous part |
---|
| 779 | // in order to perform proper aligning |
---|
| 780 | direction = parent->secondpart->p - parent->firstpart->p; |
---|
| 781 | direction.normalize(); |
---|
| 782 | // determine how many sticks are connected to parent and when connection |
---|
| 783 | // between parent and current stick appear |
---|
| 784 | int count = 0; |
---|
| 785 | int id = -1; |
---|
| 786 | for (unsigned int i = 0; i < stickconnections.size(); i++) |
---|
| 787 | { |
---|
| 788 | if (stickconnections[i].first == parent) |
---|
| 789 | { |
---|
| 790 | if (stickconnections[i].second == currstick) |
---|
| 791 | { |
---|
| 792 | id = count; |
---|
| 793 | } |
---|
| 794 | count++; |
---|
| 795 | } |
---|
| 796 | } |
---|
| 797 | if (id == -1) |
---|
| 798 | { |
---|
| 799 | logMessage("fH_Builder", "buildModel", LOG_ERROR, "Invalid behaviour"); |
---|
| 800 | delete model; |
---|
| 801 | return NULL; |
---|
| 802 | } |
---|
| 803 | |
---|
| 804 | // if there is only one child, then don't change direction - continue |
---|
| 805 | // along axis of parent. Otherwise calculate direction of id-th stick |
---|
| 806 | // (that is currstick) with use of RSZ/Vogel method of distributing points |
---|
| 807 | // evenly on a sphere |
---|
| 808 | if (count > 1) |
---|
| 809 | { |
---|
| 810 | direction = parent->firstpart->p - parent->secondpart->p; |
---|
| 811 | direction.normalize(); |
---|
| 812 | // there has to be count+1 directions, so method needs to generate |
---|
| 813 | // count+1 evenly distributed points on a sphere to make vectors |
---|
| 814 | // from point (0,0,0) to those points. First generated vector |
---|
| 815 | // will act as parent joint direction vector |
---|
| 816 | Pt3D sphere0direction = getNextDirection(count + 1, 0); |
---|
| 817 | |
---|
| 818 | // First generated vector needs to be aligned to parent vector |
---|
| 819 | Orient rotmatrix = getRotationMatrixToFitVector(sphere0direction, direction); |
---|
| 820 | |
---|
| 821 | // Calculation of direction from sphere for currstick |
---|
| 822 | direction = getNextDirection(count + 1, id + 1); |
---|
| 823 | // Rotation matrix aligning |
---|
| 824 | direction = rotmatrix.transform(direction); |
---|
| 825 | direction.normalize(); |
---|
| 826 | } |
---|
| 827 | } |
---|
| 828 | |
---|
| 829 | // calculate second position |
---|
| 830 | par.select(currstick->obj); |
---|
| 831 | secondposition += direction * par.getDoubleById("l"); |
---|
| 832 | |
---|
| 833 | // find every stick connected to current stick in order to calculate second |
---|
| 834 | // part properties |
---|
| 835 | vector<fH_StickHandle *> children; |
---|
| 836 | currstick->secondparthandle = currstick->second; |
---|
| 837 | for (pair<fH_StickHandle *, fH_StickHandle *> conn : stickconnections) |
---|
| 838 | { |
---|
| 839 | if (conn.first == currstick) |
---|
| 840 | { |
---|
| 841 | children.push_back(conn.second); |
---|
| 842 | for (int i = 0; i < dimensions; i++) |
---|
| 843 | { |
---|
| 844 | currstick->secondparthandle[i] += conn.second->first[i]; |
---|
| 845 | } |
---|
| 846 | } |
---|
| 847 | } |
---|
| 848 | // create part from current stick and other sticks connected to this part |
---|
[821] | 849 | Part *secondpart = currstick->createPart(stickparamtab, &children, model, createmapping); |
---|
[780] | 850 | secondpart->p = secondposition; |
---|
| 851 | currstick->secondpart = secondpart; |
---|
| 852 | double count = (double)children.size() + 1; |
---|
| 853 | for (int i = 0; i < dimensions; i++) |
---|
| 854 | { |
---|
| 855 | currstick->secondparthandle[i] /= count; |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | //after creating second part connect two parts with joint |
---|
| 859 | Joint * joint = currstick->createJoint(stickparamtab, model, createmapping); |
---|
| 860 | if (!joint) |
---|
| 861 | { |
---|
| 862 | logMessage("fH_Builder", "buildModel", LOG_ERROR, "Joint cannot be created"); |
---|
| 863 | delete model; |
---|
| 864 | return NULL; |
---|
| 865 | |
---|
| 866 | } |
---|
| 867 | currstick->joint = joint; |
---|
| 868 | model->checkpoint(); |
---|
| 869 | } |
---|
| 870 | // after creating a body, attach neurons to body and link them according to |
---|
| 871 | // connections |
---|
| 872 | if (developBrain(model, createmapping) == -1) |
---|
| 873 | { |
---|
| 874 | delete model; |
---|
| 875 | return NULL; |
---|
| 876 | } |
---|
| 877 | model->close(); |
---|
| 878 | return model; |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | int fH_Builder::removeNeuronsWithInvalidClasses() |
---|
| 882 | { |
---|
| 883 | int count = neurons.size(); |
---|
| 884 | if (count == 0) |
---|
| 885 | { |
---|
| 886 | return 0; |
---|
| 887 | } |
---|
| 888 | vector<fH_NeuronHandle *>::iterator it = neurons.begin(); |
---|
| 889 | Param par(neuronparamtab, NULL); |
---|
| 890 | while (it != neurons.end()) |
---|
| 891 | { |
---|
| 892 | par.select((*it)->obj); |
---|
| 893 | SString det = par.getStringById("d"); |
---|
| 894 | if (det == "") |
---|
| 895 | { |
---|
| 896 | it++; |
---|
| 897 | } |
---|
| 898 | else |
---|
| 899 | { |
---|
| 900 | Neuro *neu = new Neuro(); |
---|
| 901 | neu->setDetails(det); |
---|
| 902 | if (neu->getClass()) |
---|
| 903 | { |
---|
| 904 | it++; |
---|
| 905 | } |
---|
| 906 | else |
---|
| 907 | { |
---|
| 908 | fH_NeuronHandle *tmp = (*it); |
---|
| 909 | it = neurons.erase(it); |
---|
| 910 | delete tmp; |
---|
| 911 | } |
---|
| 912 | delete neu; |
---|
| 913 | } |
---|
| 914 | |
---|
| 915 | } |
---|
| 916 | return count - neurons.size(); |
---|
| 917 | } |
---|
| 918 | |
---|
| 919 | SString fH_Builder::toString() |
---|
| 920 | { |
---|
| 921 | SString result = ""; |
---|
| 922 | result += to_string(dimensions).c_str(); |
---|
| 923 | result += "\n"; |
---|
| 924 | // first method stringifies parts |
---|
| 925 | Param par(stickparamtab, NULL); |
---|
| 926 | void *def = ParamObject::makeObject(stickparamtab); |
---|
| 927 | par.select(def); |
---|
| 928 | par.setDefault(); |
---|
| 929 | for (fH_StickHandle *currstick : sticks) |
---|
| 930 | { |
---|
| 931 | currstick->saveProperties(par); |
---|
| 932 | SString props; |
---|
| 933 | par.saveSingleLine(props, def, true, false); |
---|
| 934 | result += "j:"; |
---|
| 935 | result += props; |
---|
| 936 | } |
---|
| 937 | ParamObject::freeObject(def); |
---|
| 938 | par.setParamTab(neuronparamtab); |
---|
| 939 | def = ParamObject::makeObject(neuronparamtab); |
---|
| 940 | par.select(def); |
---|
| 941 | par.setDefault(); |
---|
| 942 | for (fH_NeuronHandle *currneuron : neurons) |
---|
| 943 | { |
---|
| 944 | currneuron->saveProperties(par); |
---|
| 945 | SString props; |
---|
| 946 | par.saveSingleLine(props, def, true, false); |
---|
| 947 | result += "n:"; |
---|
| 948 | result += props; |
---|
| 949 | } |
---|
| 950 | ParamObject::freeObject(def); |
---|
| 951 | par.setParamTab(connectionparamtab); |
---|
| 952 | def = ParamObject::makeObject(connectionparamtab); |
---|
| 953 | par.select(def); |
---|
| 954 | par.setDefault(); |
---|
| 955 | for (fH_ConnectionHandle *currconnection : connections) |
---|
| 956 | { |
---|
| 957 | currconnection->saveProperties(par); |
---|
| 958 | SString props; |
---|
| 959 | par.saveSingleLine(props, def, true, false); |
---|
| 960 | result += "c:"; |
---|
| 961 | result += props; |
---|
| 962 | } |
---|
| 963 | ParamObject::freeObject(def); |
---|
| 964 | return result; |
---|
| 965 | } |
---|
| 966 | |
---|
| 967 | ParamEntry* fH_Builder::getParamTab(fHBodyType type) |
---|
| 968 | { |
---|
| 969 | switch (type) |
---|
| 970 | { |
---|
| 971 | case fHBodyType::JOINT: |
---|
| 972 | return stickparamtab; |
---|
| 973 | break; |
---|
| 974 | case fHBodyType::NEURON: |
---|
| 975 | return neuronparamtab; |
---|
| 976 | break; |
---|
| 977 | default: |
---|
| 978 | return connectionparamtab; |
---|
| 979 | break; |
---|
| 980 | } |
---|
| 981 | } |
---|