source: cpp/frams/genetics/f4/f4_general.h @ 1326

Last change on this file since 1326 was 1259, checked in by Maciej Komosinski, 18 months ago

f4: three #define's -> enum, minor refactorizations, added comments

  • Property svn:eol-style set to native
File size: 18.0 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2023  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5// Copyright (C) 1999,2000  Adam Rotaru-Varga (adam_rotaru@yahoo.com), GNU LGPL
6
7#ifndef _F4_GENERAL_H_
8#define _F4_GENERAL_H_
9
10#include <frams/util/3d.h>
11#include <frams/util/sstring.h>
12#include <frams/util/multirange.h>
13#include <frams/genetics/geneprops.h>
14
15#ifdef DMALLOC
16#include <dmalloc.h>
17#endif
18
19/**
20 * Performs single rotation angle decrementation on a given value.
21 * @param v pointer to the decremented value
22 */
23void rolling_dec(double *v);
24
25/**
26 * Performs single rotation angle incrementation on a given value.
27 * @param v pointer to the incremented value
28 */
29void rolling_inc(double *v);
30
31class f4_Node;   // later
32class f4_Cell;   // later
33class f4_Cells;  // later
34
35enum class f4_Cell_type {
36        CELL_UNDIFF, ///<undifferentiated cell
37        CELL_STICK,  ///<differentiated to stick, cannot divide
38        CELL_NEURON  ///<differentiated to neuron, can divide
39};
40
41class f4_CellConn;
42
43/** @name Constraints of f4 genotype structures */
44//@{
45#define F4_MAX_CELL_INPUTS  10 ///<maximum number of neuron inputs in a developing organism
46#define F4_MAX_CELLS 100 ///<maximum number of f4 organism cells
47//@}
48
49/**
50 * Abstract cell type - the representation of a single component in the developmental
51 * encoding. In the beginning, each f4_Cell is undifferentiated. During the process
52 * of development it can divide or differentiate into a stick or a neuron. If it
53 * differentiates to a neuron, then it preserves the ability to divide, but divided
54 * cells will be the same type as the parent cell. If it is a stick, then it cannot
55 * be divided anymore.
56 *
57 * From f4_Cell array the final Model of a creature is created.
58 */
59class f4_Cell
60{
61public:
62        /**
63         * Represents the repetition marker. It holds information about the pointer
64         * to the repetition node and the count of repetitions.
65         */
66        class repeat_ptr
67        {
68        public:
69                repeat_ptr() : node(NULL), count(-1) { };
70
71                /**
72                 * A constructor that takes the pointer to the repetition node and the count of repetitions.
73                 * @param a pointer to f4_Node for repetition character
74                 * @param b the number of repetitions
75                 */
76                repeat_ptr(f4_Node *a, int b) : node(a), count(b) { };
77
78                inline void makeNull() { node = NULL; count = -1; };
79
80                inline bool isNull() const { return ((node == NULL) || (count <= 0)); };
81
82                inline void dec() { count--; };
83                f4_Node    *node; ///<pointer to the repetition code
84                int       count; ///<repetition counter
85        };
86
87        /**
88         * Represents the stack of repeat_ptr objects. The objects are
89         * pushed to the stack when '#' repetition symbol appears, and are popped when
90         * the end of the current cell definition, i.e. the '>' character, appears. After the
91         * '>' character, the cell is duplicated as many times as it is defined after the
92         * repetition marker.
93         */
94        class repeat_stack
95        {
96        public:
97                repeat_stack() { top = 0; }
98
99                inline void clear() { top = 0; }
100
101                /**
102                 * Pushes repeat_ptr object onto the stack. If the stack size is exceeded, then no
103                 * information is provided.
104                 * @param rn repetition node info
105                 */
106                inline void push(repeat_ptr rn) { if (top >= stackSize) return; ptr[top] = rn; top++; }
107
108                inline void pop() { if (top > 0) top--; }
109
110                /**
111                 * Gets the current top element.
112                 * @return pointer to the element on top of the repeat_stack object
113                 */
114                inline repeat_ptr* first() { return &(ptr[top - (top > 0)]); };
115                static const int stackSize = 4;  ///<max 4 nested levels
116                repeat_ptr ptr[stackSize]; ///<array holding pointers to repeat_ptr
117                int top;  ///<index of the top of the stack
118        };
119
120        /**
121         * Creates a new f4_Cell object.
122         * @param nnr number of the cell
123         * @param ndad pointer to the parent of the created cell
124         * @param nangle the amount of commas affecting branch angles
125         * @param newP genotype properties of a given cell
126         */
127        f4_Cell(int nnr, f4_Cell *ndad, int nangle, GeneProps newP);
128        /**
129         * Creates a new f4_Cell object.
130         * @param nO pointer to an organism containing the cell
131         * @param nnr number of the cell
132         * @param ngeno pointer to the root of the genotype tree
133         * @param ngcur pointer to the f4_Node representing the current cell in the genotype tree
134         * @param ndad pointer to the parent of the created cell
135         * @param nangle the number of commas affecting branch angles
136         * @param newP genotype properties of a given cell
137         */
138        f4_Cell(f4_Cells *nO, int nnr, f4_Node *ngeno, f4_Node *ngcur, f4_Cell *ndad, int nangle, GeneProps newP);
139
140        ~f4_Cell();
141
142        /**
143         * Performs a single step of cell development. This method requires a pointer to
144         * the f4_Cells object in org attribute. If the current node in genotype tree
145         * is the branching character '<', the cell divides into two cells, unless the
146         * cell was already differentiated into the stick cell. Otherwise, the current
147         * differentiation or modification is performed on the cell. If current node is
148         * creating a connection between two neuron nodes and the input node is not
149         * yet developed, the simulation of the development of the current cell returns
150         * to wait until the input node is created. The oneStep method is deployed for every cell
151         * at least once. If one cell requires another one to develop, oneStep
152         * should be deployed again on this cell.
153         *
154         * This method, unlike genotype tree creation, checks semantics. This means that
155         * this function will fail (set error code) if:
156         *  - the cell differentiated as a stick will have branching node '<',
157         *  - the undifferentiated cell will have termination node '>' (end of cell development without differentiation),
158         *  - the stack of repetition marker '#' will exceed maximum allowed value of repetition,
159         *  - the stick modifiers, like rotation, will be applied on neuron cell,
160         *  - the differentiated cell will be differentiated again,
161         *  - the connection between neurons cannot be established,
162         *  - the neuron class is not valid.
163         *
164         * This function returns either because the development of this cell was completed,
165         * or it was halted (yielding to other cells), or the error code was set in the f4_Cells object in the org attribute.
166         */
167        void oneStep();
168
169        /**
170         * Adds a connection between this neuron cell and a given neuron cell in nfrom.
171         * @param nfrom input neuron cell
172         * @param nweight weight of connection
173         * @return 0 if connection is established, -1 otherwise
174         */
175        int   addConnection(f4_Cell *nfrom, double nweight);
176
177        /**
178         * Adjusts properties of stick objects.
179         */
180        void  adjustRecur();
181
182        int        nr;                 ///<number of cell (seems to be used only in the approximate f1 converter for neuron connections)
183        f4_Cell_type type;             ///<type
184        f4_Cell *dadlink;              ///<pointer to cell parent
185        f4_Cells  *org;                ///<uplink to organism
186
187        f4_Node *genot;                    ///<genotype tree
188        f4_Node *gcur;                 ///<current genotype execution pointer
189        f4_Node *old_gcur;             ///<used externally by f4_Cells::oneStep() to track changes of gcur, i.e., to detect progress in cell development
190        repeat_stack repeat;           ///<stack holding repetition nodes and counters
191        bool recurProcessedFlag;       ///<used during recursive traverse
192        MultiRange genoRange;          ///<remember the genotype codes affecting this cell so far
193
194        GeneProps    P;                ///<properties
195        int          anglepos;         ///<number of position within dad's children (,)
196        int          stickchildcount;  ///<number of children (sticks only)
197        int          commacount;       ///<number of postitions at lastend (>=childcount)
198        double       rolling;          ///<rolling angle ('R') (around x)
199        double       xrot;                         ///<rotation angle around x
200        double       zrot;             ///<horizontal rotation angle due to branching (around z)
201
202        int          p2_refno;         ///<the number of the last end part object, used in f0
203        int          joint_refno;      ///<the number of the joint object, used in f0
204        int          neuro_refno;      ///<the number of the neuro object, used in f0
205
206        double       inertia;          ///<inertia of neuron N
207        double       force;            ///<force of neuron N
208        double       sigmo;            ///<sigmoid of neuron N
209        f4_CellConn *conns[F4_MAX_CELL_INPUTS]; ///<array of neuron connections
210        int          conns_count;      ///<number of connections
211        NeuroClass *neuclass;          ///<pointer to neuron class
212};
213
214/**
215 * Class representing a connection between neuron cells.
216 */
217class f4_CellConn
218{
219public:
220        /**
221         * Constructor for f4_CellLink class. Parameter nfrom represents input
222         * neuron cell.
223         * @param nfrom pointer to input neuron cell
224         * @param nweight weight of connection
225         */
226        f4_CellConn(f4_Cell *nfrom, double nweight);
227
228        f4_Cell *from;  ///<pointer to input neuron cell
229        double weight;  ///<weight of connection
230};
231
232
233/**
234 * A class representing a collection of cells. It is equivalent to an organism.
235 */
236class f4_Cells
237{
238public:
239
240        /**
241         * Constructor taking genotype in a form of a tree.
242         * @param genome genotype tree
243         * @param nrepair false if nothing to repair
244         */
245        f4_Cells(f4_Node *genome, bool nrepair);
246
247        /**
248         * Destructor removing cells from memory.
249         */
250        ~f4_Cells();
251
252        /**
253         * Adds a new cell to organism.
254         * @param newcell cell to be added
255         */
256        void addCell(f4_Cell *newcell);
257
258        /**
259         * Creates an approximate genotype in the f1 encoding and stores it in a given parameter.
260         * @param out the string in which the approximate f1 genotype will be stored
261         */
262        void toF1Geno(SString &out);
263
264        /**
265         * Performs a single step of organism development. It runs each active cell in the organism.
266         * @return false if all cells are developed or there is an error, true otherwise
267         */
268        bool oneStep();
269
270        /**
271         * Performs the full development of organism and returns error code if something
272         * went wrong.
273         * @return 0 if organism developed successfully, error code if something went wrong
274         */
275        int simulate();
276
277        /**
278         * Prints the current state of the organism (for debugging purposes).
279         * @param description printout header
280         */
281        void print_cells(const char* description);
282
283        /**
284         * Returns error code of the last simulation.
285         * @return error code
286         */
287        int getErrorCode() { return errorcode; };
288
289        /**
290         * Returns position of an error in genotype.
291         * @return position of an error
292         */
293        int getErrorPos() { return errorpos; };
294
295        /**
296         * Sets error code GENOPER_OPFAIL for a simulation on a given position.
297         * @param nerrpos position of an error
298         */
299        void setError(int nerrpos);
300
301        /**
302         * Sets the element of genotype to be repaired by removal.
303         * @param nerrpos position of an error in genotype
304         * @param to_remove the f4_Node to be removed from the genotype tree in order to repair
305         */
306        void setRepairRemove(int nerrpos, f4_Node *to_remove);
307
308        /**
309         * Sets repairing of a genotype by inserting a new node to the current genotype.
310         * @param nerrpos position of an error in genotype
311         * @param parent the parent of a new element
312         * @param to_insert the element to be inserted
313         * @return 0 if repair can be performed, or -1 otherwise because the repair flag wasn't set in the constructor
314         */
315        int setRepairInsert(int nerrpos, f4_Node *parent, f4_Node *to_insert);
316
317        /**
318         * Repairs the genotype according to setRepairRemove or setRepairInsert methods.
319         * @param geno pointer to the genotype tree
320         * @param whichchild 1 if first child, 2 otherwise
321         */
322        void repairGeno(f4_Node *geno, int whichchild);
323
324        // the cells
325        f4_Cell *C[F4_MAX_CELLS];  ///<Array of all cells of an organism
326        int     cell_count;        ///<Number of cells in an organism
327        bool    development_stagnation; ///< simulate() and oneStep() use it to force f4_Cell's waiting to develop their neural connections to progress, indicating that all cells have not had progress during the last step
328
329private:
330        // for error reporting / genotype fixing
331        bool repair;
332        int errorcode;
333        int errorpos;
334        f4_Node *repair_remove;
335        f4_Node *repair_parent;
336        f4_Node *repair_insert;
337        void toF1GenoRec(int curc, SString &out);
338        f4_Cell *tmpcel;  // needed by toF1Geno
339};
340
341
342/**
343 * A class to organize a f4 genotype in a tree structure.
344 */
345class f4_Node
346{
347public:
348        string name; ///<one-letter gene code or multiple characters for neuron classes (then neuclass != NULL)
349        f4_Node *parent; ///<parent link or NULL
350        f4_Node *child; ///<child or NULL
351        f4_Node *child2; ///<second child or NULL
352        int pos; ///<original position in the string
353
354        int reps; ///<repetition counter for the '#' gene
355        char prop_symbol; ///<old-style properties (force,intertia,sigmoid) of the N neuron: !=/
356        bool prop_increase; ///<false=decrease neuron property (force,intertia,sigmoid), true=increase it
357        int conn_from; ///<relative number of the neuron this neuron get an input from
358        double conn_weight; ///<neuron connection weight
359        NeuroClass *neuclass; ///< NULL or not if "name" is a neuroclass name with a proper genotype context ("N:neuroclassname"). New in 2023-04 - to fix fatal flaw with fundamental assumptions: it was impossible to distinguish between single-character neuron names such as S, D, G and single-character modifiers. They were all stored in the "name" field. Before 2018 this was never a problem because the only supported neuroclasses had distinctive symbols such as @|*GTS, and the set of supported modifiers was small and different from neuroclass letters (no G,D,S clash).
360
361        f4_Node();
362
363        /**
364         * Multiple-character name constructor.
365         * @param nname string from genotype representing node
366         * @param nparent pointer to parent of the node
367         * @param npos position of node substring in the genotype string
368         */
369        f4_Node(string nname, f4_Node *nparent, int npos);
370
371        /**
372         * Single-character name constructor.
373         * @param nname character from genotype representing node
374         * @param nparent pointer to parent of the node
375         * @param npos position of node character in the genotype string
376         */
377        f4_Node(char nname, f4_Node *nparent, int npos);
378
379        ~f4_Node();
380
381        /**
382         * Recursively print subtree (for debugging).
383         * @param root starting node
384         * @param indent initial indentation
385         */
386        static void print_tree(const f4_Node *root, int indent);
387
388        /**
389         * Adds the child to the node.
390         * @param nchi the child to be added to the node
391         * @return 0 if the child could be added, -1 otherwise
392         */
393        int addChild(f4_Node *nchi);
394
395        /**
396         * Removes the child from the node.
397         * @param nchi the child to be removed from the node
398         * @return 0 if child could be removed, -1 otherwise
399         */
400        int removeChild(f4_Node *nchi);
401
402        /**
403         * Returns the number of children.
404         * @return 0, 1 or 2
405         */
406        int childCount();
407
408        /**
409         * Returns the number of nodes coming from this node in a recursive way.
410         * @return the number of nodes from this node
411         */
412        int count() const;
413
414        /**
415         * Returns the nth subnode (0-)
416         * @param n index of the child to be found
417         * @return pointer to the nth subnode or NULL if not found
418         */
419        f4_Node* ordNode(int n);
420
421        /**
422         * Returns a random subnode.
423         * @return random subnode
424         */
425        f4_Node* randomNode();
426
427        /**
428         * Returns a random subnode with a given size.
429         * @param min minimum size
430         * @param max maximum size
431         * @return a random subnode with a given size or NULL
432         */
433        f4_Node* randomNodeWithSize(int min, int max);
434
435        /**
436         * Prints recursively the tree from a given node.
437         * @param buf variable to store printing result
438         */
439        void      sprintAdj(char *&buf);
440
441        /**
442         * Recursively copies the genotype tree from this node.
443         * @return pointer to a tree copy
444         */
445        f4_Node* duplicate();
446
447        /**
448         * Recursively releases memory from all node children.
449         */
450        void      destroy();
451private:
452        void     sprint(SString &out);  // print recursively
453};
454
455/**
456 * The main function for converting a string of f4 encoding to a tree structure. Prepares
457 * f4_Node root of tree and runs f4_processRecur function for it.
458 * @param geno the string representing an f4 genotype
459 * @return a pointer to the f4_Node object representing the f4 tree root
460 */
461 //f4_Node* f4_processTree(const char *geno);
462
463 /**
464  * Scans a genotype string starting from a given position. This recursive method creates
465  * a tree of f4_Node objects. This method extracts each potentially functional element
466  * of a genotype string to a separate f4_Nodes. When the branching character '<' occurs,
467  * f4_processRecur is deployed for the latest f4_Node element. This method does not
468  * analyse the genotype semantically, it only checks if the syntax is proper. The only
469  * semantic aspect is neuron class name extraction, where the GenoOperators
470  * class is used to parse the potential neuron class name.
471  * This is an internal function; for regular cases, use f4_process().
472  * @param genot the string with the entire genotype
473  * @param genot_len length of genot (precomputed for efficiency)
474  * @param pos_inout the current position of processing in string (advanced by the function)
475  * @param parent current parent of the analysed branch of the genotype
476  * @return 0 if processing was successful, otherwise returns the position of an error in the genotype
477  */
478int f4_processRecur(const char *genot, const int genot_len, int &pos_inout, f4_Node *parent);
479
480/**
481 * A wrapper for f4_processRecur(). Creates a tree of f4_Node objects corresponding to
482 * the provided genotype.
483 * @param genot the string with the entire genotype
484 * @param root root of the tree corresponding to the genotype
485 * @return 0 if processing was successful, otherwise returns the position of an error in the genotype
486 */
487int f4_process(const char *genot, f4_Node *root);
488
489/**
490 * Parses notation of the neuron connection - takes the beginning of the connection
491 * definition, extracts the relative position of input neurons and the weight of the connection.
492 * After successful parsing, returns the pointer to the first character after the connection
493 * definition, or NULL if the connection definition was not valid due to the lack of [, :, ]
494 * characters or an invalid value of relfrom or weight.
495 * @param fragm the beginning of connection definition, should be the '[' character
496 * @param relfrom the reference to an int variable in which the relative position of the input neuron will be stored
497 * @param weight the reference to a double variable in which the weight of the connection will be stored
498 * @return the pointer to the first character in string after connection definition
499 */
500const char *parseConnection(const char *fragm, int &relfrom, double &weight);
501
502#endif
Note: See TracBrowser for help on using the repository browser.