[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[1227] | 2 | // Copyright (C) 1999-2023 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[193] | 4 | |
---|
[196] | 5 | // Copyright (C) 1999,2000 Adam Rotaru-Varga (adam_rotaru@yahoo.com), GNU LGPL |
---|
| 6 | |
---|
[193] | 7 | #ifndef _F4_GENERAL_H_ |
---|
| 8 | #define _F4_GENERAL_H_ |
---|
| 9 | |
---|
[196] | 10 | #include <frams/util/3d.h> |
---|
| 11 | #include <frams/util/sstring.h> |
---|
| 12 | #include <frams/util/multirange.h> |
---|
[760] | 13 | #include <frams/genetics/geneprops.h> |
---|
[193] | 14 | |
---|
| 15 | #ifdef DMALLOC |
---|
| 16 | #include <dmalloc.h> |
---|
| 17 | #endif |
---|
| 18 | |
---|
[760] | 19 | /** |
---|
| 20 | * Performs single rotation angle decrementation on a given value. |
---|
| 21 | * @param v pointer to the decremented value |
---|
| 22 | */ |
---|
[774] | 23 | void rolling_dec(double *v); |
---|
[193] | 24 | |
---|
[760] | 25 | /** |
---|
| 26 | * Performs single rotation angle incrementation on a given value. |
---|
| 27 | * @param v pointer to the incremented value |
---|
| 28 | */ |
---|
[774] | 29 | void rolling_inc(double *v); |
---|
[193] | 30 | |
---|
[1227] | 31 | class f4_Node; // later |
---|
[193] | 32 | class f4_Cell; // later |
---|
| 33 | class f4_Cells; // later |
---|
| 34 | |
---|
| 35 | |
---|
[760] | 36 | /** @name Types of f4_Cell's */ |
---|
| 37 | //@{ |
---|
[1227] | 38 | #define CELL_UNDIFF 40 ///<undifferentiated cell |
---|
| 39 | #define CELL_STICK 41 ///<differentiated to stick, cannot divide |
---|
| 40 | #define CELL_NEURON 42 ///<differentiated to neuron, can divide |
---|
[760] | 41 | //@} |
---|
[193] | 42 | |
---|
[760] | 43 | /** |
---|
| 44 | * Scans f4 genotype string for a stopping character and returns the position of |
---|
| 45 | * this stopping character or 1 if the end of string was reached. This method is used |
---|
| 46 | * for closing braces, like ), >, ]. It runs recursively when opening braces |
---|
| 47 | * like (, <, # are found. |
---|
| 48 | * @param s string with the f4 genotype |
---|
| 49 | * @param slen length of a given string |
---|
| 50 | * @param stopchar character to be found |
---|
| 51 | * @return 1 if end of string was reached, or position of found character in sequence |
---|
| 52 | */ |
---|
[1228] | 53 | int scanRecur(const char* s, int slen, char stopchar); |
---|
[193] | 54 | |
---|
| 55 | |
---|
[1227] | 56 | class f4_CellConn; |
---|
[193] | 57 | |
---|
[760] | 58 | /** @name Constraints of f4 genotype structures */ |
---|
| 59 | //@{ |
---|
[1227] | 60 | #define F4_MAX_CELL_INPUTS 10 ///<maximum number of neuron inputs in a developing organism |
---|
| 61 | #define F4_MAX_CELLS 100 ///<maximum number of f4 organism cells |
---|
[760] | 62 | //@} |
---|
| 63 | |
---|
| 64 | /** |
---|
[1227] | 65 | * Abstract cell type - the representation of a single component in the developmental |
---|
[760] | 66 | * encoding. In the beginning, each f4_Cell is undifferentiated. During the process |
---|
| 67 | * of development it can divide or differentiate into a stick or a neuron. If it |
---|
| 68 | * differentiates to a neuron, then it preserves the ability to divide, but divided |
---|
| 69 | * cells will be the same type as the parent cell. If it is a stick, then it cannot |
---|
| 70 | * be divided anymore. |
---|
| 71 | * |
---|
| 72 | * From f4_Cell array the final Model of a creature is created. |
---|
| 73 | */ |
---|
[193] | 74 | class f4_Cell |
---|
| 75 | { |
---|
| 76 | public: |
---|
[760] | 77 | /** |
---|
| 78 | * Represents the repetition marker. It holds information about the pointer |
---|
| 79 | * to the repetition node and the count of repetitions. |
---|
| 80 | */ |
---|
[196] | 81 | class repeat_ptr |
---|
| 82 | { |
---|
| 83 | public: |
---|
| 84 | repeat_ptr() : node(NULL), count(-1) { }; |
---|
[760] | 85 | |
---|
| 86 | /** |
---|
| 87 | * A constructor that takes the pointer to the repetition node and the count of repetitions. |
---|
[1227] | 88 | * @param a pointer to f4_Node for repetition character |
---|
[760] | 89 | * @param b the number of repetitions |
---|
| 90 | */ |
---|
[1227] | 91 | repeat_ptr(f4_Node *a, int b) : node(a), count(b) { }; |
---|
[760] | 92 | |
---|
| 93 | inline void makeNull() { node = NULL; count = -1; }; |
---|
| 94 | |
---|
[196] | 95 | inline bool isNull() const { return ((node == NULL) || (count <= 0)); }; |
---|
[760] | 96 | |
---|
[196] | 97 | inline void dec() { count--; }; |
---|
[1227] | 98 | f4_Node *node; ///<pointer to the repetition code |
---|
[767] | 99 | int count; ///<repetition counter |
---|
[196] | 100 | }; |
---|
[193] | 101 | |
---|
[760] | 102 | /** |
---|
| 103 | * Represents the stack of repeat_ptr objects. The objects are |
---|
| 104 | * pushed to the stack when '#' repetition symbol appears, and are popped when |
---|
| 105 | * the end of the current cell definition, i.e. the '>' character, appears. After the |
---|
| 106 | * '>' character, the cell is duplicated as many times as it is defined after the |
---|
| 107 | * repetition marker. |
---|
| 108 | */ |
---|
| 109 | class repeat_stack |
---|
[196] | 110 | { |
---|
| 111 | public: |
---|
[760] | 112 | repeat_stack() { top = 0; } |
---|
| 113 | |
---|
| 114 | inline void clear() { top = 0; } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Pushes repeat_ptr object onto the stack. If the stack size is exceeded, then no |
---|
| 118 | * information is provided. |
---|
| 119 | * @param rn repetition node info |
---|
| 120 | */ |
---|
| 121 | inline void push(repeat_ptr rn) { if (top >= stackSize) return; ptr[top] = rn; top++; } |
---|
| 122 | |
---|
| 123 | inline void pop() { if (top > 0) top--; } |
---|
| 124 | |
---|
| 125 | /** |
---|
| 126 | * Gets the current top element. |
---|
| 127 | * @return pointer to the element on top of the repeat_stack object |
---|
| 128 | */ |
---|
| 129 | inline repeat_ptr* first() { return &(ptr[top - (top > 0)]); }; |
---|
| 130 | static const int stackSize = 4; ///<max 4 nested levels |
---|
| 131 | repeat_ptr ptr[stackSize]; ///<array holding pointers to repeat_ptr |
---|
[1227] | 132 | int top; ///<index of the top of the stack |
---|
[196] | 133 | }; |
---|
[193] | 134 | |
---|
[760] | 135 | /** |
---|
| 136 | * Creates a new f4_Cell object. |
---|
[1227] | 137 | * @param nnr number of the cell |
---|
[760] | 138 | * @param ndad pointer to the parent of the created cell |
---|
| 139 | * @param nangle the amount of commas affecting branch angles |
---|
| 140 | * @param newP genotype properties of a given cell |
---|
| 141 | */ |
---|
[1227] | 142 | f4_Cell(int nnr, f4_Cell *ndad, int nangle, GeneProps newP); |
---|
[760] | 143 | /** |
---|
| 144 | * Creates a new f4_Cell object. |
---|
| 145 | * @param nO pointer to an organism containing the cell |
---|
[1227] | 146 | * @param nnr number of the cell |
---|
[760] | 147 | * @param ngeno pointer to the root of the genotype tree |
---|
[1227] | 148 | * @param ngcur pointer to the f4_Node representing the current cell in the genotype tree |
---|
[760] | 149 | * @param ndad pointer to the parent of the created cell |
---|
| 150 | * @param nangle the number of commas affecting branch angles |
---|
| 151 | * @param newP genotype properties of a given cell |
---|
| 152 | */ |
---|
[1227] | 153 | f4_Cell(f4_Cells *nO, int nnr, f4_Node *ngeno, f4_Node *ngcur, f4_Cell *ndad, int nangle, GeneProps newP); |
---|
[760] | 154 | |
---|
[196] | 155 | ~f4_Cell(); |
---|
[193] | 156 | |
---|
[760] | 157 | /** |
---|
[767] | 158 | * Performs a single step of cell development. This method requires a pointer to |
---|
| 159 | * the f4_Cells object in org attribute. If the current node in genotype tree |
---|
| 160 | * is the branching character '<', the cell divides into two cells, unless the |
---|
| 161 | * cell was already differentiated into the stick cell. Otherwise, the current |
---|
| 162 | * differentiation or modification is performed on the cell. If current node is |
---|
| 163 | * creating a connection between two neuron nodes and the input node is not |
---|
| 164 | * yet developed, the simulation of the development of the current cell waits until |
---|
| 165 | * the input node is created. The onestep method is deployed for every cell |
---|
| 166 | * at least once. If one cell requires another one to develop, onestep |
---|
[760] | 167 | * should be deployed again on this cell. This method, unlike genotype tree |
---|
| 168 | * creation, checks semantics. This means that this function will fail if: |
---|
[767] | 169 | * - the cell differentiated as a stick will have branching node '<', |
---|
| 170 | * - the undifferentiated cell will have termination node '>' (end of cell development without differentiation), |
---|
| 171 | * - the stack of repetition marker '#' will exceed maximum allowed value of repetition, |
---|
[760] | 172 | * - the stick modifiers, like rotation, will be applied on neuron cell, |
---|
| 173 | * - the differentiated cell will be differentiated again, |
---|
[767] | 174 | * - the connection between neurons cannot be established, |
---|
[760] | 175 | * - the neuron class is not valid. |
---|
| 176 | * |
---|
| 177 | * @return 0 if development was successful, 1 if there was an error in genotype tree |
---|
| 178 | */ |
---|
[1227] | 179 | int oneStep(); |
---|
[193] | 180 | |
---|
[760] | 181 | /** |
---|
[1227] | 182 | * Adds a connection between this neuron cell and a given neuron cell in nfrom. |
---|
| 183 | * @param nfrom input neuron cell |
---|
| 184 | * @param nweight weight of connection |
---|
| 185 | * @return 0 if connection is established, -1 otherwise |
---|
[760] | 186 | */ |
---|
[1227] | 187 | int addConnection(f4_Cell *nfrom, double nweight); |
---|
[760] | 188 | |
---|
| 189 | /** |
---|
| 190 | * Adjusts properties of stick objects. |
---|
| 191 | */ |
---|
[196] | 192 | void adjustRec(); |
---|
[193] | 193 | |
---|
[1227] | 194 | int nr; ///<number of cell (seems to be used only in old f1 converter for neuron connections) |
---|
[760] | 195 | int type; ///<type |
---|
[767] | 196 | f4_Cell *dadlink; ///<pointer to cell parent |
---|
| 197 | f4_Cells *org; ///<uplink to organism |
---|
[193] | 198 | |
---|
[1227] | 199 | f4_Node *genot; ///<genotype tree |
---|
| 200 | f4_Node *gcur; ///<current genotype execution pointer |
---|
| 201 | bool active; ///<determines whether development is still active; even if false, the cell may "yield" - may be halted (but still having its onStep() called) due to neural connections waiting for other cells to potentially develop neurons |
---|
[760] | 202 | repeat_stack repeat; ///<stack holding repetition nodes and counters |
---|
[767] | 203 | int recProcessedFlag; ///<used during recursive traverse |
---|
[760] | 204 | MultiRange genoRange; ///<remember the genotype codes affecting this cell so far |
---|
[193] | 205 | |
---|
[767] | 206 | GeneProps P; ///<properties |
---|
[760] | 207 | int anglepos; ///<number of position within dad's children (,) |
---|
| 208 | int childcount; ///<number of children |
---|
| 209 | int commacount; ///<number of postitions at lastend (>=childcount) |
---|
| 210 | double rolling; ///<rolling angle ('R') (around x) |
---|
| 211 | double xrot; ///<rotation angle around x |
---|
| 212 | double zrot; ///<horizontal rotation angle due to branching (around z) |
---|
[193] | 213 | |
---|
[760] | 214 | double mz; ///<freedom in z |
---|
[767] | 215 | int p2_refno; ///<the number of the last end part object, used in f0 |
---|
| 216 | int joint_refno; ///<the number of the joint object, used in f0 |
---|
| 217 | int neuro_refno; ///<the number of the neuro object, used in f0 |
---|
[760] | 218 | |
---|
| 219 | double inertia; ///<inertia of neuron |
---|
| 220 | double force; ///<force of neuron |
---|
| 221 | double sigmo; ///<sigmoid of neuron |
---|
[1227] | 222 | f4_CellConn *conns[F4_MAX_CELL_INPUTS]; ///<array of neuron connections |
---|
| 223 | int conns_count; ///<number of connections |
---|
[767] | 224 | NeuroClass *neuclass; ///<pointer to neuron class |
---|
[193] | 225 | }; |
---|
| 226 | |
---|
[760] | 227 | /** |
---|
[1227] | 228 | * Class representing a connection between neuron cells. |
---|
[760] | 229 | */ |
---|
[1227] | 230 | class f4_CellConn |
---|
[193] | 231 | { |
---|
| 232 | public: |
---|
[760] | 233 | /** |
---|
[767] | 234 | * Constructor for f4_CellLink class. Parameter nfrom represents input |
---|
[1227] | 235 | * neuron cell. |
---|
| 236 | * @param nfrom pointer to input neuron cell |
---|
| 237 | * @param nweight weight of connection |
---|
[760] | 238 | */ |
---|
[1227] | 239 | f4_CellConn(f4_Cell *nfrom, double nweight); |
---|
[760] | 240 | |
---|
[1227] | 241 | f4_Cell *from; ///<pointer to input neuron cell |
---|
| 242 | double weight; ///<weight of connection |
---|
[193] | 243 | }; |
---|
| 244 | |
---|
| 245 | |
---|
[760] | 246 | /** |
---|
[767] | 247 | * A class representing a collection of cells. It is equivalent to an organism. |
---|
[760] | 248 | */ |
---|
[193] | 249 | class f4_Cells |
---|
| 250 | { |
---|
[196] | 251 | public: |
---|
[760] | 252 | |
---|
| 253 | /** |
---|
| 254 | * Constructor taking genotype in a form of a tree. |
---|
| 255 | * @param genome genotype tree |
---|
| 256 | * @param nrepair 0 if nothing to repair |
---|
| 257 | */ |
---|
[1227] | 258 | f4_Cells(f4_Node *genome, int nrepair); |
---|
[760] | 259 | |
---|
| 260 | /** |
---|
| 261 | * Constructor taking genotype in a form of a string. |
---|
| 262 | * @param genome genotype string |
---|
| 263 | * @param nrepair 0 if nothing to repair |
---|
| 264 | */ |
---|
[196] | 265 | f4_Cells(SString &genome, int nrepair); |
---|
[760] | 266 | |
---|
| 267 | /** |
---|
| 268 | * Destructor removing cells from memory. |
---|
| 269 | */ |
---|
[196] | 270 | ~f4_Cells(); |
---|
[760] | 271 | |
---|
| 272 | /** |
---|
[767] | 273 | * Adds a new cell to organism. |
---|
[760] | 274 | * @param newcell cell to be added |
---|
| 275 | */ |
---|
[767] | 276 | void addCell(f4_Cell *newcell); |
---|
[760] | 277 | |
---|
| 278 | /** |
---|
[767] | 279 | * Creates an approximate genotype in the f1 encoding and stores it in a given parameter. |
---|
| 280 | * @param out the string in which the approximate f1 genotype will be stored |
---|
[760] | 281 | */ |
---|
| 282 | void toF1Geno(SString &out); |
---|
| 283 | |
---|
| 284 | /** |
---|
[1227] | 285 | * Performs a single step of organism development. It runs each active cell in the organism. |
---|
| 286 | * @return false if all cells are developed or there is an error, true otherwise |
---|
[760] | 287 | */ |
---|
[1227] | 288 | bool oneStep(); |
---|
[760] | 289 | |
---|
| 290 | /** |
---|
[767] | 291 | * Performs the full development of organism and returns error code if something |
---|
[760] | 292 | * went wrong. |
---|
| 293 | * @return 0 if organism developed successfully, error code if something went wrong |
---|
| 294 | */ |
---|
[1227] | 295 | int simulate(); |
---|
[760] | 296 | |
---|
| 297 | /** |
---|
[1227] | 298 | * Prints the current state of the organism (for debugging purposes). |
---|
| 299 | * @param description printout header |
---|
| 300 | */ |
---|
| 301 | void print_cells(const char* description); |
---|
| 302 | |
---|
| 303 | /** |
---|
[767] | 304 | * Returns error code of the last simulation. |
---|
[760] | 305 | * @return error code |
---|
| 306 | */ |
---|
[1227] | 307 | int getErrorCode() { return errorcode; }; |
---|
[760] | 308 | |
---|
| 309 | /** |
---|
[767] | 310 | * Returns position of an error in genotype. |
---|
| 311 | * @return position of an error |
---|
[760] | 312 | */ |
---|
[1227] | 313 | int getErrorPos() { return errorpos; }; |
---|
[760] | 314 | |
---|
| 315 | /** |
---|
[767] | 316 | * Sets error code GENOPER_OPFAIL for a simulation on a given position. |
---|
| 317 | * @param nerrpos position of an error |
---|
[760] | 318 | */ |
---|
[196] | 319 | void setError(int nerrpos); |
---|
[760] | 320 | |
---|
| 321 | /** |
---|
| 322 | * Sets the element of genotype to be repaired by removal. |
---|
[767] | 323 | * @param nerrpos position of an error in genotype |
---|
[1227] | 324 | * @param rem the f4_Node to be removed from the genotype tree in order to repair |
---|
[760] | 325 | */ |
---|
[1227] | 326 | void setRepairRemove(int nerrpos, f4_Node *rem); |
---|
[760] | 327 | |
---|
| 328 | /** |
---|
[767] | 329 | * Sets repairing of a genotype by inserting a new node to the current genotype. |
---|
| 330 | * @param nerrpos position of an error in genotype |
---|
| 331 | * @param parent the parent of a new element |
---|
[760] | 332 | * @param insert the element to be inserted |
---|
[774] | 333 | * @return 0 if repair can be performed, or -1 otherwise because the repair flag wasn't set in the constructor |
---|
[760] | 334 | */ |
---|
[1227] | 335 | int setRepairInsert(int nerrpos, f4_Node *parent, f4_Node *insert); |
---|
[760] | 336 | |
---|
| 337 | /** |
---|
[767] | 338 | * Repairs the genotype according to setRepairRemove or setRepairInsert methods. |
---|
| 339 | * @param geno pointer to the genotype tree |
---|
[760] | 340 | * @param whichchild 1 if first child, 2 otherwise |
---|
| 341 | */ |
---|
[1227] | 342 | void repairGeno(f4_Node *geno, int whichchild); |
---|
[193] | 343 | |
---|
[196] | 344 | // the cells |
---|
[1227] | 345 | f4_Cell *C[F4_MAX_CELLS]; ///<Array of all cells of an organism |
---|
| 346 | int cell_count; ///<Number of cells in an organism |
---|
[193] | 347 | |
---|
| 348 | private: |
---|
[196] | 349 | // for error reporting / genotype fixing |
---|
| 350 | int repair; |
---|
[1227] | 351 | int errorcode; |
---|
[196] | 352 | int errorpos; |
---|
[1227] | 353 | f4_Node *repair_remove; |
---|
| 354 | f4_Node *repair_parent; |
---|
| 355 | f4_Node *repair_insert; |
---|
[196] | 356 | void toF1GenoRec(int curc, SString &out); |
---|
[767] | 357 | f4_Cell *tmpcel; // needed by toF1Geno |
---|
[1227] | 358 | f4_Node *f4rootnode; // used by constructor |
---|
[193] | 359 | }; |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | /** |
---|
[767] | 363 | * A class to organize a f4 genotype in a tree structure. |
---|
[193] | 364 | */ |
---|
[1227] | 365 | class f4_Node |
---|
[193] | 366 | { |
---|
| 367 | public: |
---|
[1227] | 368 | string name; ///<one-letter gene code or multiple characters for neuron classes (then neuclass != NULL) |
---|
| 369 | f4_Node *parent; ///<parent link or NULL |
---|
| 370 | f4_Node *child; ///<child or NULL |
---|
| 371 | f4_Node *child2; ///<second child or NULL |
---|
[767] | 372 | int pos; ///<original position in the string |
---|
[193] | 373 | |
---|
[1227] | 374 | int reps; ///<repetition counter for the '#' gene |
---|
| 375 | char prop_symbol; ///<old-style properties (force,intertia,sigmoid) of the N neuron: !=/ |
---|
| 376 | bool prop_increase; ///<false=decrease neuron property (force,intertia,sigmoid), true=increase it |
---|
| 377 | int conn_from; ///<relative number of the neuron this neuron get an input from |
---|
| 378 | double conn_weight; ///<neuron connection weight |
---|
| 379 | NeuroClass *neuclass; ///< NULL or not if "name" is a neuroclass name with a proper genotype context ("N:neuroclassname"). New in 2023-04 - to fix fatal flaw with fundamental assumptions: it was impossible to distinguish between single-character neuron names such as S, D, G and single-character modifiers. They were all stored in the "name" field. Before 2018 this was never a problem because the only supported neuroclasses had distinctive symbols such as @|*GTS, and the set of supported modifiers was small and different from neuroclass letters (no G,D,S clash). |
---|
[760] | 380 | |
---|
[1227] | 381 | f4_Node(); |
---|
| 382 | |
---|
[760] | 383 | /** |
---|
| 384 | * Multiple-character name constructor. |
---|
| 385 | * @param nname string from genotype representing node |
---|
[767] | 386 | * @param nparent pointer to parent of the node |
---|
| 387 | * @param npos position of node substring in the genotype string |
---|
[760] | 388 | */ |
---|
[1227] | 389 | f4_Node(string nname, f4_Node *nparent, int npos); |
---|
[760] | 390 | |
---|
| 391 | /** |
---|
[767] | 392 | * Single-character name constructor. |
---|
[760] | 393 | * @param nname character from genotype representing node |
---|
[767] | 394 | * @param nparent pointer to parent of the node |
---|
| 395 | * @param npos position of node character in the genotype string |
---|
[760] | 396 | */ |
---|
[1227] | 397 | f4_Node(char nname, f4_Node *nparent, int npos); |
---|
[760] | 398 | |
---|
[1227] | 399 | ~f4_Node(); |
---|
[760] | 400 | |
---|
| 401 | /** |
---|
[1227] | 402 | * Recursively print subtree (for debugging). |
---|
| 403 | * @param root starting node |
---|
| 404 | * @param indent initial indentation |
---|
| 405 | */ |
---|
| 406 | static void print_tree(const f4_Node *root, int indent); |
---|
| 407 | |
---|
| 408 | /** |
---|
[767] | 409 | * Adds the child to the node. |
---|
| 410 | * @param nchi the child to be added to the node |
---|
| 411 | * @return 0 if the child could be added, -1 otherwise |
---|
[760] | 412 | */ |
---|
[1227] | 413 | int addChild(f4_Node *nchi); |
---|
[760] | 414 | |
---|
| 415 | /** |
---|
[767] | 416 | * Removes the child from the node. |
---|
| 417 | * @param nchi the child to be removed from the node |
---|
[760] | 418 | * @return 0 if child could be removed, -1 otherwise |
---|
| 419 | */ |
---|
[1227] | 420 | int removeChild(f4_Node *nchi); |
---|
[760] | 421 | |
---|
| 422 | /** |
---|
[767] | 423 | * Returns the number of children. |
---|
[760] | 424 | * @return 0, 1 or 2 |
---|
| 425 | */ |
---|
[767] | 426 | int childCount(); |
---|
[760] | 427 | |
---|
| 428 | /** |
---|
[767] | 429 | * Returns the number of nodes coming from this node in a recursive way. |
---|
| 430 | * @return the number of nodes from this node |
---|
[760] | 431 | */ |
---|
[1227] | 432 | int count() const; |
---|
[760] | 433 | |
---|
| 434 | /** |
---|
| 435 | * Returns the nth subnode (0-) |
---|
[767] | 436 | * @param n index of the child to be found |
---|
| 437 | * @return pointer to the nth subnode or NULL if not found |
---|
[760] | 438 | */ |
---|
[1227] | 439 | f4_Node* ordNode(int n); |
---|
[760] | 440 | |
---|
| 441 | /** |
---|
| 442 | * Returns a random subnode. |
---|
| 443 | * @return random subnode |
---|
| 444 | */ |
---|
[1227] | 445 | f4_Node* randomNode(); |
---|
[760] | 446 | |
---|
| 447 | /** |
---|
[767] | 448 | * Returns a random subnode with a given size. |
---|
[760] | 449 | * @param min minimum size |
---|
| 450 | * @param max maximum size |
---|
[767] | 451 | * @return a random subnode with a given size or NULL |
---|
[760] | 452 | */ |
---|
[1227] | 453 | f4_Node* randomNodeWithSize(int min, int max); |
---|
[760] | 454 | |
---|
| 455 | /** |
---|
[767] | 456 | * Prints recursively the tree from a given node. |
---|
| 457 | * @param buf variable to store printing result |
---|
[760] | 458 | */ |
---|
[767] | 459 | void sprintAdj(char *&buf); |
---|
[760] | 460 | |
---|
| 461 | /** |
---|
[767] | 462 | * Recursively copies the genotype tree from this node. |
---|
[760] | 463 | * @return pointer to a tree copy |
---|
| 464 | */ |
---|
[1227] | 465 | f4_Node* duplicate(); |
---|
[760] | 466 | |
---|
| 467 | /** |
---|
| 468 | * Recursively releases memory from all node children. |
---|
| 469 | */ |
---|
| 470 | void destroy(); |
---|
[193] | 471 | private: |
---|
[767] | 472 | void sprint(SString &out); // print recursively |
---|
[193] | 473 | }; |
---|
| 474 | |
---|
[760] | 475 | /** |
---|
[767] | 476 | * The main function for converting a string of f4 encoding to a tree structure. Prepares |
---|
[1228] | 477 | * f4_Node root of tree and runs f4_processRecur function for it. |
---|
[767] | 478 | * @param geno the string representing an f4 genotype |
---|
[1227] | 479 | * @return a pointer to the f4_Node object representing the f4 tree root |
---|
[760] | 480 | */ |
---|
[1228] | 481 | //f4_Node* f4_processTree(const char *geno); |
---|
[760] | 482 | |
---|
| 483 | /** |
---|
[767] | 484 | * Scans a genotype string starting from a given position. This recursive method creates |
---|
[1227] | 485 | * a tree of f4_Node objects. This method extracts each potentially functional element |
---|
| 486 | * of a genotype string to a separate f4_Nodes. When the branching character '<' occurs, |
---|
[1228] | 487 | * f4_processRecur is deployed for the latest f4_Node element. This method does not |
---|
[767] | 488 | * analyse the genotype semantically, it only checks if the syntax is proper. The only |
---|
| 489 | * semantic aspect is neuron class name extraction, where the GenoOperators |
---|
| 490 | * class is used to parse the potential neuron class name. |
---|
| 491 | * @param genot the string holding all the genotype |
---|
[760] | 492 | * @param pos0 the current position of processing in string |
---|
[774] | 493 | * @param parent current parent of the analysed branch of the genotype |
---|
[767] | 494 | * @return 0 if processing was successful, otherwise returns the position of an error in the genotype |
---|
[760] | 495 | */ |
---|
[1228] | 496 | int f4_processRecur(const char *genot, unsigned pos0, f4_Node *parent); |
---|
[193] | 497 | |
---|
[760] | 498 | /** |
---|
[767] | 499 | * Parses notation of the neuron connection - takes the beginning of the connection |
---|
| 500 | * definition, extracts the relative position of input neurons and the weight of the connection. |
---|
| 501 | * After successful parsing, returns the pointer to the first character after the connection |
---|
| 502 | * definition, or NULL if the connection definition was not valid due to the lack of [, :, ] |
---|
| 503 | * characters or an invalid value of relfrom or weight. |
---|
| 504 | * @param fragm the beginning of connection definition, should be the '[' character |
---|
| 505 | * @param relfrom the reference to an int variable in which the relative position of the input neuron will be stored |
---|
| 506 | * @param weight the reference to a double variable in which the weight of the connection will be stored |
---|
| 507 | * @return the pointer to the first character in string after connection definition |
---|
[760] | 508 | */ |
---|
[774] | 509 | const char *parseConnection(const char *fragm, int &relfrom, double &weight); |
---|
[193] | 510 | |
---|
| 511 | #endif |
---|