[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[1130] | 2 | // Copyright (C) 1999-2021 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[137] | 4 | |
---|
[135] | 5 | #include "nn_layout.h" |
---|
| 6 | #include <vector> |
---|
[1130] | 7 | #include <algorithm> |
---|
[247] | 8 | #ifdef __BORLANDC__ |
---|
| 9 | #include <alloc.h> //borland needs for alloc/free |
---|
| 10 | #endif |
---|
[492] | 11 | #if (defined MACOS) | (defined EMSCRIPTEN) |
---|
[285] | 12 | #include <stdlib.h> |
---|
| 13 | #endif |
---|
[135] | 14 | |
---|
[319] | 15 | //#define DB(x) x |
---|
| 16 | #define DB(x) |
---|
[135] | 17 | |
---|
| 18 | #if DB(1)+0 |
---|
| 19 | #include <assert.h> |
---|
| 20 | #endif |
---|
| 21 | |
---|
| 22 | class block; |
---|
| 23 | |
---|
| 24 | /** Information about a single element (neuron). There are N einfo objects in an array called "einfo" */ |
---|
| 25 | struct einfo |
---|
| 26 | { |
---|
| 27 | /** Element's owner */ |
---|
| 28 | class block *block; |
---|
| 29 | |
---|
| 30 | /** Integer coordinates (neurons are simply placed in a grid, (x,y) is a grid cell) */ |
---|
| 31 | int x, y; |
---|
| 32 | }; |
---|
| 33 | |
---|
| 34 | /** Array[0..N-1] - one einfo for each neuron */ |
---|
| 35 | static struct einfo* einfo; |
---|
| 36 | |
---|
| 37 | /** Array[0..N-1] - initially each neuron resides in its own block. The algorithm merges blocks until one single block is created */ |
---|
| 38 | static block **blocks; |
---|
| 39 | |
---|
| 40 | /** N = number of neurons */ |
---|
| 41 | static int N; |
---|
| 42 | |
---|
| 43 | /** Provides neuron connections information and receives the layout result */ |
---|
| 44 | static NNLayoutState *nn; |
---|
| 45 | |
---|
| 46 | static char *JEDEN = (char*)"1"; |
---|
| 47 | |
---|
| 48 | /** Block is a group of neurons. |
---|
| 49 | After "blocking" some neurons, their relative location will not change. */ |
---|
| 50 | class block |
---|
| 51 | { |
---|
| 52 | public: |
---|
| 53 | |
---|
| 54 | /** Block's id is its index in the "blocks" array */ |
---|
| 55 | int id; |
---|
| 56 | |
---|
| 57 | /** Block members (neurons), or actually neuron indexes (0..N-1 ints) */ |
---|
| 58 | std::vector<int> elementy; |
---|
| 59 | |
---|
| 60 | /** Block's bounding box (a rectangle containing all elemens) |
---|
| 61 | w=maxx-minx+1; h=maxy-miny+1; |
---|
| 62 | */ |
---|
| 63 | int w, h; |
---|
| 64 | int minx, miny, maxx, maxy; |
---|
| 65 | |
---|
| 66 | /** 2d array, w*h cells, indicating if a given (x,y) location is taken. |
---|
| 67 | This speeds up checking if neurons from two blocks overlap. |
---|
| 68 | */ |
---|
| 69 | char *map; |
---|
| 70 | |
---|
| 71 | /** Creating an initial block consisting of a single neuron */ |
---|
| 72 | block(int nr) : id(nr), w(1), h(1), minx(0), miny(0), maxx(0), maxy(0) |
---|
| 73 | { |
---|
| 74 | DB(printf("new block(%d)\n", nr)); |
---|
| 75 | dodajelement(nr, 0, 0); |
---|
| 76 | blocks[id] = this; |
---|
| 77 | map = JEDEN; |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | ~block() |
---|
| 81 | { |
---|
| 82 | DB(printf("~ block(%d)\n", id)); |
---|
| 83 | blocks[id] = 0; |
---|
| 84 | zwolnijmape(); |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | void zwolnijmape(void) |
---|
| 88 | { |
---|
| 89 | if (map) |
---|
| 90 | { |
---|
| 91 | if (map != JEDEN) free(map); |
---|
| 92 | map = 0; |
---|
| 93 | } |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | void potrzebnamapa(void) |
---|
| 97 | { |
---|
| 98 | if (map) return; |
---|
| 99 | odtworzmape(); |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | void odtworzmape(void) |
---|
| 103 | { |
---|
| 104 | zwolnijmape(); |
---|
| 105 | w = maxx - minx + 1; |
---|
| 106 | h = maxy - miny + 1; |
---|
| 107 | map = (char*)calloc(1, w*h); |
---|
[319] | 108 | DB(printf("mapa bloku #%d\n", id)); |
---|
| 109 | for (size_t i = 0; i < elementy.size(); i++) |
---|
[135] | 110 | { |
---|
[319] | 111 | int e = elementy[i]; |
---|
[135] | 112 | map[w*(einfo[e].y - miny) + (einfo[e].x - minx)] = 1; |
---|
| 113 | } |
---|
[319] | 114 | DB(for (int i = 0; i < h; i++){ for (int e = 0; e < w; e++)printf("%c", map[w*i + e] ? '*' : '.'); printf("\n"); }) |
---|
[135] | 115 | } |
---|
| 116 | |
---|
| 117 | /** Add a neuron to a block at location(x,y) */ |
---|
| 118 | void dodajelement(int nr, int x, int y) |
---|
| 119 | { |
---|
| 120 | elementy.push_back(nr); |
---|
| 121 | einfo[nr].x = x; |
---|
| 122 | einfo[nr].y = y; |
---|
| 123 | einfo[nr].block = this; |
---|
| 124 | } |
---|
| 125 | }; |
---|
| 126 | |
---|
| 127 | static int moznadolaczyc(block *b, block *b2, int dx, int dy) |
---|
| 128 | { |
---|
| 129 | /* Check if block b2 can be merged with b with b2 shifted by (dx,dy) so no overlap occurs. |
---|
| 130 | All coordinates are relative to b->minx/miny |
---|
| 131 | */ |
---|
| 132 | int x1, y1, x2, y2; // union rectangle |
---|
[1130] | 133 | x1 = std::max(0, b2->minx - b->minx + dx); |
---|
| 134 | x2 = std::min(b->maxx - b->minx, -b->minx + dx + b2->maxx); |
---|
[135] | 135 | if (x1 > x2) return 1; |
---|
[1130] | 136 | y1 = std::max(0, b2->miny - b->miny + dy); |
---|
| 137 | y2 = std::min(b->maxy - b->miny, -b->miny + dy + b2->maxy); |
---|
[135] | 138 | if (y1 > y2) return 1; |
---|
| 139 | int x, y; |
---|
| 140 | dx += b2->minx - b->minx; //dx,dy relative to minx,miny |
---|
| 141 | dy += b2->miny - b->miny; |
---|
| 142 | b->potrzebnamapa(); |
---|
| 143 | b2->potrzebnamapa(); |
---|
| 144 | for (y = y1; y <= y2; y++) |
---|
| 145 | { |
---|
| 146 | for (x = x1; x <= x2; x++) |
---|
| 147 | if (b->map[b->w*y + x] && b2->map[b2->w*(y - dy) + (x - dx)]) return 0; |
---|
| 148 | } |
---|
| 149 | return 1; |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | /** Merge b2 with b shifting b2 by (dx,dy) - adds all b2's neurons to b and deletes b2 */ |
---|
| 153 | static int dolaczblock(block *b, block *b2, int dx, int dy) |
---|
| 154 | { // return 1 if successful |
---|
| 155 | if (!moznadolaczyc(b, b2, dx, dy)) return 0; // merging causes no collision |
---|
[319] | 156 | DB(printf("#%d(%d,%d,%d,%d) + #%d(%d,%d,%d,%d)<%d,%d>", b->id, b->minx, b->miny, b->maxx, b->maxy, b2->id, b2->minx, b2->miny, b2->maxx, b2->maxy, dx, dy)); |
---|
[135] | 157 | |
---|
| 158 | b->zwolnijmape(); |
---|
[319] | 159 | for (size_t i = 0; i < b2->elementy.size(); i++) |
---|
[135] | 160 | { |
---|
[319] | 161 | int e = b2->elementy[i]; |
---|
[135] | 162 | b->dodajelement(e, einfo[e].x + dx, einfo[e].y + dy); |
---|
| 163 | } |
---|
[1130] | 164 | b->minx = std::min(b->minx, dx + b2->minx); |
---|
| 165 | b->miny = std::min(b->miny, dy + b2->miny); |
---|
| 166 | b->maxx = std::max(b->maxx, dx + b2->maxx); |
---|
| 167 | b->maxy = std::max(b->maxy, dy + b2->maxy); |
---|
[135] | 168 | |
---|
[319] | 169 | DB( |
---|
| 170 | printf(" -> (%d,%d,%d,%d)\n", b->minx, b->miny, b->maxx, b->maxy); |
---|
[135] | 171 | |
---|
[319] | 172 | printf(" ...#%d...(%d)...", b->id, b->elementy.size()); |
---|
| 173 | for (size_t i = 0; i < b->elementy.size(); i++) |
---|
[135] | 174 | { |
---|
[319] | 175 | int e = b->elementy[i]; |
---|
| 176 | assert(einfo[e].x >= b->minx); |
---|
| 177 | assert(einfo[e].x <= b->maxx); |
---|
| 178 | assert(einfo[e].y >= b->miny); |
---|
| 179 | assert(einfo[e].y <= b->maxy); |
---|
| 180 | printf("(%d)%d,%d ", e, einfo[e].x, einfo[e].y); |
---|
[135] | 181 | } |
---|
| 182 | |
---|
[319] | 183 | printf("\n") |
---|
| 184 | ); |
---|
[135] | 185 | |
---|
| 186 | delete b2; |
---|
| 187 | return 1; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /** e2 neuron will be connected to e neuron's input: |
---|
| 191 | - e and e2 belong to different blocks: shift/merge the blocks so e2 is to the left of e |
---|
| 192 | - same block: nothing can be done |
---|
| 193 | */ |
---|
| 194 | static void polaczjakowejscie(int e, int e2) |
---|
| 195 | { |
---|
| 196 | block *b, *b2; |
---|
| 197 | b = einfo[e].block; |
---|
| 198 | if (!einfo[e2].block) new block(e2); |
---|
| 199 | b2 = einfo[e2].block; |
---|
| 200 | if (b == b2) |
---|
| 201 | { |
---|
| 202 | DB(printf("--- b==b2 -> cancel\n")); |
---|
| 203 | return; |
---|
| 204 | } |
---|
| 205 | int dx, dy; |
---|
| 206 | dx = einfo[e].x - einfo[e2].x; |
---|
| 207 | dy = einfo[e].y - einfo[e2].y; |
---|
[319] | 208 | DB(printf(" elem.%d (%d,%d@%d) + elem.%d (%d,%d@%d)...\n", e, einfo[e].x, einfo[e].y, b->id, e2, einfo[e2].x, einfo[e2].y, b2->id)); |
---|
[135] | 209 | if (dolaczblock(b, b2, dx - 1, dy)) return; |
---|
| 210 | int proba; // retry - increasing the y offset (keeps x offset at -1) |
---|
| 211 | for (proba = 1;; proba++) |
---|
| 212 | { |
---|
| 213 | if (dolaczblock(b, b2, dx - 1, dy - proba)) return; |
---|
| 214 | if (dolaczblock(b, b2, dx - 1, dy + proba)) return; |
---|
| 215 | } |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /** Retrieve the information about neuron e inputs and place the input neurons accordingly |
---|
| 219 | unless they are already processed |
---|
| 220 | */ |
---|
| 221 | static void ustawelement(int e) |
---|
| 222 | { |
---|
| 223 | if (einfo[e].block) |
---|
| 224 | { |
---|
[319] | 225 | DB(printf("block#%d exists\n", e)); |
---|
[135] | 226 | return; |
---|
| 227 | } |
---|
| 228 | new block(e); |
---|
| 229 | int we; |
---|
| 230 | int n = nn->GetInputs(e); |
---|
| 231 | for (we = 0; we < n; we++) |
---|
| 232 | { |
---|
| 233 | int e2 = nn->GetLink(e, we); |
---|
| 234 | if (e2 < 0) continue; |
---|
| 235 | if (e == e2) continue; |
---|
| 236 | ustawelement(e2); |
---|
| 237 | polaczjakowejscie(e, e2); |
---|
| 238 | } |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | The algorithm: |
---|
| 243 | 1. Phase one |
---|
| 244 | - for each neuron, place its input neurons to the left |
---|
| 245 | (at relative location (-1,dy), where dy is any number, ideally 0) |
---|
| 246 | - the neuron's location in a block is never changed after the initial assignment |
---|
| 247 | - which means that any further connections within a given block are ignored (neurons are already fixed in place) |
---|
| 248 | - foreign block connections cause block merges, shifting the blocks so the (-1,dy) condition is met |
---|
| 249 | (which also affects all neurons in the other block, since their relative positions are fixed) |
---|
| 250 | - the final result is a set of blocks corresponding to the "islands" in the neural network |
---|
| 251 | 2. Phase two |
---|
| 252 | - "islands" are merged into one final block. Any relative offsets can be used, as their neurons |
---|
| 253 | are not connected anyway. Here a simple method is used: placing the islands in a vertical stack. |
---|
| 254 | */ |
---|
| 255 | void smartlayout(NNLayoutState *nnlayout) |
---|
| 256 | { |
---|
| 257 | DB(printf("\n >>>>>>>>> smartlayout <<<<<<<<<<<\n")); |
---|
| 258 | nn = nnlayout; |
---|
| 259 | N = nn->GetElements(); |
---|
| 260 | einfo = (struct einfo*)calloc(N, sizeof(struct einfo)); |
---|
| 261 | blocks = (class block**)calloc(N, sizeof(class block*)); |
---|
| 262 | |
---|
| 263 | int el; |
---|
| 264 | for (el = 0; el < N; el++) ustawelement(el); |
---|
| 265 | |
---|
| 266 | DB(printf(" - - merging blocks - -\n")); |
---|
| 267 | |
---|
| 268 | block *first; |
---|
| 269 | for (el = 0; el < N; el++) if (blocks[el]) { first = blocks[el]; el++; break; } |
---|
| 270 | while (el<N) |
---|
| 271 | { |
---|
| 272 | if ((first->maxx - first->minx)>(first->maxy - first->miny)) |
---|
| 273 | { |
---|
| 274 | int y = first->maxy + 2; |
---|
| 275 | int x = first->minx; |
---|
| 276 | int ex = first->maxx; |
---|
| 277 | while (el<N) |
---|
| 278 | { |
---|
| 279 | if (blocks[el]) |
---|
| 280 | { |
---|
| 281 | int dx = blocks[el]->maxx - blocks[el]->minx + 2; |
---|
| 282 | dolaczblock(first, blocks[el], x - blocks[el]->minx, y - blocks[el]->miny); |
---|
| 283 | x += dx; |
---|
| 284 | if (x>ex) break; |
---|
| 285 | } |
---|
| 286 | el++; |
---|
| 287 | } |
---|
| 288 | } |
---|
| 289 | else |
---|
| 290 | { |
---|
| 291 | int x = first->maxx + 2; |
---|
| 292 | int y = first->miny; |
---|
| 293 | int ey = first->maxy; |
---|
| 294 | while (el<N) |
---|
| 295 | { |
---|
| 296 | if (blocks[el]) |
---|
| 297 | { |
---|
| 298 | int dy = blocks[el]->maxy - blocks[el]->miny + 2; |
---|
| 299 | dolaczblock(first, blocks[el], x - blocks[el]->minx, y - blocks[el]->miny); |
---|
| 300 | y += dy; |
---|
| 301 | if (y>ey) break; |
---|
| 302 | } |
---|
| 303 | el++; |
---|
| 304 | } |
---|
| 305 | } |
---|
| 306 | } |
---|
| 307 | /* |
---|
| 308 | for (;el<N;el++) |
---|
| 309 | if (blocks[el]) |
---|
| 310 | dolaczblock(first,blocks[el],first->minx-blocks[el]->minx,first->maxy-blocks[el]->miny+1); |
---|
| 311 | */ |
---|
| 312 | if (first) // at this stage we have a single block containing all neurons |
---|
| 313 | { |
---|
| 314 | DB(printf(" - - setting coordinates - -\n")); |
---|
| 315 | DB(first->odtworzmape()); |
---|
[319] | 316 | for (size_t i = 0; i < first->elementy.size(); i++) |
---|
[135] | 317 | { |
---|
| 318 | el = first->elementy[i]; |
---|
| 319 | nn->SetXYWH(el, einfo[el].x * 70, -einfo[el].y * 70, 50, 50); |
---|
| 320 | } |
---|
| 321 | delete first; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | free(blocks); |
---|
| 325 | free(einfo); |
---|
| 326 | DB(printf("--------------------------------\n\n")); |
---|
| 327 | } |
---|