[109] | 1 | // This file is a part of the Framsticks GDK library. |
---|
| 2 | // Copyright (C) 2002-2011 Szymon Ulatowski. See LICENSE.txt for details. |
---|
| 3 | // Refer to http://www.framsticks.com/ for further information. |
---|
| 4 | |
---|
| 5 | #include <frams/genetic/geno.h> |
---|
| 6 | #include <frams/virtfile/stdiofile.h> |
---|
| 7 | #include <frams/util/sstringutils.h> |
---|
| 8 | #include <frams/genetic/defgenoconv.h> |
---|
| 9 | #include <frams/neuro/neuroimpl.h> |
---|
| 10 | #include <frams/neuro/neurofactory.h> |
---|
| 11 | #include <frams/errmgr/stdouterr.h> |
---|
| 12 | |
---|
| 13 | /** |
---|
| 14 | @file |
---|
| 15 | Sample code: Neural network tester (can run your custom neurons) |
---|
| 16 | */ |
---|
| 17 | |
---|
| 18 | StdoutErrorHandler err; //redirect model-related errors to stdout |
---|
| 19 | DefaultGenoConvManager gcm; //without this object the application would only handle "format 0" genotypes |
---|
| 20 | |
---|
| 21 | #ifndef GDK_WITHOUT_FRAMS |
---|
| 22 | #include <frams/mech/creatmechobj.h> |
---|
| 23 | int CreatMechObject::modeltags_id=0; |
---|
| 24 | int CreatMechObject::mechtags_id=0; |
---|
| 25 | #endif |
---|
| 26 | |
---|
| 27 | ParamEntry creature_paramtab[]={0}; |
---|
| 28 | |
---|
| 29 | #ifdef VEYETEST |
---|
| 30 | #include <frams/neuro/impl/neuroimpl-vectoreye.h> |
---|
| 31 | |
---|
| 32 | #define N_VEye 0 |
---|
| 33 | #define N_VMotor 1 |
---|
| 34 | #define N_Mode 2 |
---|
| 35 | #define N_Fitness 3 |
---|
| 36 | #define LEARNINGSTEPS 50 |
---|
| 37 | |
---|
| 38 | void veyeStep(Model &m,int step) |
---|
| 39 | { |
---|
| 40 | static float angle=0; |
---|
| 41 | |
---|
| 42 | NeuroNetImpl::getImpl(m.getNeuro(N_Mode))->setState(step>=LEARNINGSTEPS); //0 (learning) or 1 (normal) |
---|
| 43 | |
---|
| 44 | NeuroImpl *ni=NeuroNetImpl::getImpl(m.getNeuro(N_VEye)); |
---|
| 45 | ((NI_VectorEye*)ni)->relpos.y=0; |
---|
| 46 | ((NI_VectorEye*)ni)->relpos.z=0; |
---|
| 47 | if (NeuroNetImpl::getImpl(m.getNeuro(N_Mode))->getNewState()<0.5) |
---|
| 48 | { //learning |
---|
| 49 | ((NI_VectorEye*)ni)->relpos.x=5.0*sin(2*M_PI*step/LEARNINGSTEPS); |
---|
| 50 | } |
---|
| 51 | else |
---|
| 52 | { //VMotor controls location of VEye |
---|
| 53 | angle+=NeuroNetImpl::getImpl(m.getNeuro(N_VMotor))->getState(); |
---|
| 54 | angle=fmod((double)angle,M_PI*2.0); |
---|
| 55 | ((NI_VectorEye*)ni)->relpos.x=5*sin(angle); |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | NeuroNetImpl::getImpl(m.getNeuro(N_Fitness))->setState(angle); //wymaga poprawy |
---|
| 59 | //oraz trzeba przemyslec kolejnosc get/set'ow neuronow zeby sygnal sie dobrze propagowal. |
---|
| 60 | } |
---|
| 61 | #endif |
---|
| 62 | |
---|
| 63 | int main(int argc,char*argv[]) |
---|
| 64 | { |
---|
| 65 | if (argc<=1) |
---|
| 66 | { |
---|
| 67 | puts("Parameters: <genotype> [number of simulation steps]"); |
---|
| 68 | return 10; |
---|
| 69 | } |
---|
| 70 | SString gen(argv[1]); |
---|
| 71 | if (!strcmp(gen,"-")) |
---|
| 72 | { |
---|
| 73 | gen=0; |
---|
| 74 | StdioFILEDontClose in(stdin); |
---|
| 75 | loadSString(&in,gen); |
---|
| 76 | } |
---|
| 77 | Geno g(gen); |
---|
| 78 | if (!g.isValid()) {puts("invalid genotype");return 5;} |
---|
| 79 | Model m(g); |
---|
| 80 | if (!m.getNeuroCount()) {puts("no neural network");return 1;} |
---|
| 81 | printf("%d neurons,",m.getNeuroCount()); |
---|
| 82 | NeuroFactory neurofac; |
---|
| 83 | neurofac.setStandardImplementation(); |
---|
| 84 | NeuroNetConfig nn_config(&neurofac); |
---|
| 85 | NeuroNetImpl *nn=new NeuroNetImpl(m,nn_config); |
---|
| 86 | int i; Neuro *n; |
---|
| 87 | if (!nn->getErrorCount()) printf(" no errors\n"); |
---|
| 88 | else |
---|
| 89 | { |
---|
| 90 | printf(" %d errors:",nn->getErrorCount()); |
---|
| 91 | int no_impl=0; SString no_impl_names; |
---|
| 92 | int init_err=0; SString init_err_names; |
---|
| 93 | for(i=0;i<m.getNeuroCount();i++) |
---|
| 94 | { |
---|
| 95 | n=m.getNeuro(i); |
---|
| 96 | NeuroImpl *ni=NeuroNetImpl::getImpl(n); |
---|
| 97 | if (!ni) |
---|
| 98 | { |
---|
| 99 | if (no_impl) no_impl_names+=','; |
---|
| 100 | no_impl_names+=SString::sprintf("#%d.%s",i,(const char*)n->getClassName()); |
---|
| 101 | no_impl++; |
---|
| 102 | } |
---|
| 103 | else if (ni->status==NeuroImpl::InitError) |
---|
| 104 | { |
---|
| 105 | if (init_err) init_err_names+=','; |
---|
| 106 | init_err_names+=SString::sprintf("#%d.%s",i,(const char*)n->getClassName()); |
---|
| 107 | init_err++; |
---|
| 108 | } |
---|
| 109 | } |
---|
| 110 | printf("\n"); |
---|
| 111 | if (no_impl) printf("%d x missing implementation (%s)\n",no_impl,(const char*)no_impl_names); |
---|
| 112 | if (init_err) printf("%d x failed initialization (%s)\n",init_err,(const char*)init_err_names); |
---|
| 113 | } |
---|
| 114 | int steps=1; |
---|
| 115 | if (argc>2) steps=atol(argv[2]); |
---|
| 116 | int st; |
---|
| 117 | printf("step"); |
---|
| 118 | for(i=0;i<m.getNeuroCount();i++) |
---|
| 119 | { |
---|
| 120 | n=m.getNeuro(i); |
---|
| 121 | printf("\t#%d.%s",i,(const char*)n->getClassName()); |
---|
| 122 | } |
---|
| 123 | printf("\n"); |
---|
| 124 | for(st=0;st<=steps;st++) |
---|
| 125 | { |
---|
| 126 | #ifdef VEYETEST |
---|
| 127 | veyeStep(m,st); |
---|
| 128 | #endif |
---|
| 129 | printf("%d",st); |
---|
| 130 | for(i=0;i<m.getNeuroCount();i++) |
---|
| 131 | { |
---|
| 132 | n=m.getNeuro(i); |
---|
| 133 | printf("\t%g",n->state); |
---|
| 134 | } |
---|
| 135 | printf("\n"); |
---|
| 136 | nn->simulateNeuroNet(); |
---|
| 137 | } |
---|
| 138 | neurofac.freeImplementation(); |
---|
| 139 | } |
---|