1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
2 | // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. |
---|
3 | // See LICENSE.txt for details. |
---|
4 | |
---|
5 | #include <frams/virtfile/stdiofile.h> |
---|
6 | #include <frams/util/sstringutils.h> |
---|
7 | #include <frams/genetics/preconfigured.h> |
---|
8 | #include <frams/model/model.h> |
---|
9 | #include <frams/errmgr/stdouterr.h> |
---|
10 | #include <frams/canvas/nn_layout_model.h> |
---|
11 | |
---|
12 | #include <algorithm> |
---|
13 | |
---|
14 | /** |
---|
15 | @file |
---|
16 | Sample code: Neuron layout tester |
---|
17 | |
---|
18 | Hint: Use loader_test to extract genotypes from framsticks *.gen files: |
---|
19 | loader_test "data/walking.gen" "Walking Lizard" | neuro_layout_test - |
---|
20 | */ |
---|
21 | |
---|
22 | // stl is fun? ;-) ForwardIterator implementation for element coordinates (required by min_element/max_element) |
---|
23 | template <int MEMBER> struct NNIter: public std::iterator<std::forward_iterator_tag,int> //MEMBER: 0..3=x/y/w/h |
---|
24 | { |
---|
25 | NNLayoutState *nn; int index; |
---|
26 | NNIter() {} |
---|
27 | NNIter(NNLayoutState *_nn, int _index):nn(_nn),index(_index) {} |
---|
28 | int operator*() {return nn->GetXYWH(index)[MEMBER];} |
---|
29 | NNIter& operator++() {index++; return *this;} |
---|
30 | bool operator!=(const NNIter& it) {return index!=it.index;} |
---|
31 | bool operator==(const NNIter& it) {return index==it.index;} |
---|
32 | |
---|
33 | static NNIter begin(NNLayoutState *_nn) {return NNIter(_nn,0);} |
---|
34 | static NNIter end(NNLayoutState *_nn) {return NNIter(_nn,_nn->GetElements());} |
---|
35 | }; |
---|
36 | |
---|
37 | class Screen |
---|
38 | { |
---|
39 | int min_x,max_x,min_y,max_y,scale_x,scale_y; |
---|
40 | int rows,columns; |
---|
41 | char* screen; |
---|
42 | |
---|
43 | public: |
---|
44 | |
---|
45 | Screen(int _min_x,int _max_x,int _min_y,int _max_y,int _scale_x,int _scale_y) |
---|
46 | :min_x(_min_x),max_x(_max_x),min_y(_min_y),max_y(_max_y),scale_x(_scale_x),scale_y(_scale_y) |
---|
47 | { |
---|
48 | columns=(max_x-min_x+scale_x-1)/scale_x; |
---|
49 | rows=(max_y-min_y+scale_y-1)/scale_y; |
---|
50 | screen=new char[rows*columns]; |
---|
51 | memset(screen,' ',rows*columns); |
---|
52 | } |
---|
53 | |
---|
54 | ~Screen() |
---|
55 | { |
---|
56 | delete[] screen; |
---|
57 | } |
---|
58 | |
---|
59 | void put(int x,int y,const char *str) |
---|
60 | { |
---|
61 | x=(x-min_x)/scale_x; |
---|
62 | y=(y-min_y)/scale_y; |
---|
63 | if (x<0) return; |
---|
64 | if (y<0) return; |
---|
65 | if (y>=rows) return; |
---|
66 | for(;*str;str++,x++) |
---|
67 | { |
---|
68 | if (x>=columns) return; |
---|
69 | screen[columns*y+x]=*str; |
---|
70 | } |
---|
71 | } |
---|
72 | |
---|
73 | void print() |
---|
74 | { |
---|
75 | for(int y=0;y<rows;y++) |
---|
76 | { |
---|
77 | fwrite(&screen[columns*y],1,columns,stdout); |
---|
78 | printf("\n"); |
---|
79 | } |
---|
80 | } |
---|
81 | }; |
---|
82 | |
---|
83 | int main(int argc,char*argv[]) |
---|
84 | { |
---|
85 | StdoutErrorHandler err;//the default ErrorHandler constructor automatically registers this object to receive framsg messages (and in this case, redirect them to standard output) |
---|
86 | PreconfiguredGenetics genetics; |
---|
87 | |
---|
88 | if (argc<=1) |
---|
89 | { |
---|
90 | puts("Parameters:\n" |
---|
91 | " 1. Genotype (or - character indicating the genotype will be read from stdin)\n" |
---|
92 | " 2. (Optional) layout type (the only useful layout is 2, which is the default, see nn_simple_layout.cpp"); |
---|
93 | return 10; |
---|
94 | } |
---|
95 | SString gen(argv[1]); |
---|
96 | if (!strcmp(gen,"-")) |
---|
97 | { |
---|
98 | gen=0; |
---|
99 | StdioFILEDontClose in(stdin); |
---|
100 | loadSString(&in,gen); |
---|
101 | } |
---|
102 | int layout_type=2; |
---|
103 | if (argc>2) layout_type=atol(argv[2]); |
---|
104 | Geno g(gen); |
---|
105 | if (!g.isValid()) {puts("invalid genotype");return 5;} |
---|
106 | Model m(g); |
---|
107 | if (!m.getNeuroCount()) {puts("no neural network");return 1;} |
---|
108 | printf("%d neurons,",m.getNeuroCount()); |
---|
109 | |
---|
110 | NNLayoutState_Model nn_layout(&m); |
---|
111 | struct NNLayoutFunction &nnfun=nn_layout_functions[layout_type]; |
---|
112 | printf(" using layout type=%d (%s)\n",layout_type,nnfun.name); |
---|
113 | nnfun.doLayout(&nn_layout); |
---|
114 | |
---|
115 | for(int i=0;i<nn_layout.GetElements();i++) |
---|
116 | { |
---|
117 | int *xywh=nn_layout.GetXYWH(i); |
---|
118 | printf("#%-3d %s\t%d,%d\t%dx%d\n",i,(const char*)m.getNeuro(i)->getClassName(), |
---|
119 | xywh[0],xywh[1],xywh[2],xywh[3]); |
---|
120 | } |
---|
121 | |
---|
122 | Screen screen(*std::min_element(NNIter<0>::begin(&nn_layout),NNIter<0>::end(&nn_layout))-30, |
---|
123 | *std::max_element(NNIter<0>::begin(&nn_layout),NNIter<0>::end(&nn_layout))+70, |
---|
124 | *std::min_element(NNIter<1>::begin(&nn_layout),NNIter<1>::end(&nn_layout)), |
---|
125 | *std::max_element(NNIter<1>::begin(&nn_layout),NNIter<1>::end(&nn_layout))+30, |
---|
126 | 10,35); |
---|
127 | |
---|
128 | printf("===========================================\n"); |
---|
129 | for(int i=0;i<nn_layout.GetElements();i++) |
---|
130 | { |
---|
131 | int *xywh=nn_layout.GetXYWH(i); |
---|
132 | SString label=SString::sprintf("%d:%s",i,(const char*)m.getNeuro(i)->getClassName()); |
---|
133 | screen.put(xywh[0],xywh[1],(const char*)label); |
---|
134 | } |
---|
135 | screen.print(); |
---|
136 | printf("===========================================\n"); |
---|
137 | |
---|
138 | } |
---|