1 | #include "neuroimpl-fuzzy.h"
|
---|
2 | #include "neuroimpl-fuzzy-f0.h"
|
---|
3 |
|
---|
4 | int NI_FuzzyNeuro::countOuts(const Model *m, const Neuro *fuzzy)
|
---|
5 | {
|
---|
6 | int outputs=0;
|
---|
7 | for(int i=0;i<m->getNeuroCount();i++)
|
---|
8 | for(int in=0;in<m->getNeuro(i)->getInputCount();in++)
|
---|
9 | if (m->getNeuro(i)->getInput(in)==fuzzy) outputs++;
|
---|
10 | return outputs;
|
---|
11 | }
|
---|
12 |
|
---|
13 | int NI_FuzzyNeuro::lateinit()
|
---|
14 | {
|
---|
15 | int i, maxOutputNr;
|
---|
16 |
|
---|
17 | //check correctness of given parameters: string must not be null, sets&rules number > 0
|
---|
18 | if((fuzzySetsNr<1)||(rulesNr<1)||(fuzzySetString.len()==0)||(fuzzyRulesString.len()==0))
|
---|
19 | return 0; //error
|
---|
20 |
|
---|
21 | // this part contains transformation of fuzzy sets
|
---|
22 | fuzzySets = new double[4*fuzzySetsNr]; //because every fuzzy set consist of 4 numbers
|
---|
23 | // converts fuzzy string from f0 to table of fuzzy numbers type 'double'
|
---|
24 | // (fill created space with numbers taken from string)
|
---|
25 | // also checks whether number of fuzzy sets in the string equals declared in the definition
|
---|
26 | if (FuzzyF0String::convertStrToSets(fuzzySetString, fuzzySets, fuzzySetsNr) != 0)
|
---|
27 | return 0; //error
|
---|
28 |
|
---|
29 | // this part contains transformation of fuzzy rules and defuzzyfication parameters
|
---|
30 | rulesDef = new int[2*rulesNr]; //for each rule remembers number of inputs and outputs
|
---|
31 | //check correctness of string and fill in the rulesDef
|
---|
32 | if (FuzzyF0String::countInputsOutputs(fuzzyRulesString, rulesDef, rulesNr) == 0)
|
---|
33 | {
|
---|
34 | defuzzParam = new double[rulesNr]; // parameters used in defuzyfication process
|
---|
35 | // create space for rules according to rulesDef
|
---|
36 | rules = new int*[rulesNr]; //list of rules...
|
---|
37 | for (i=0; i<rulesNr; i++) //...that contains rules body
|
---|
38 | {
|
---|
39 | rules[i] = new int[2*(rulesDef[2*i]+rulesDef[2*i+1])]; //each rule can have different number of inputs and outputs
|
---|
40 | defuzzParam[i] = 0; //should be done a little bit earlier, but why do not use this loop?
|
---|
41 | }
|
---|
42 | // fill created space with numbers taken from string
|
---|
43 | if (FuzzyF0String::convertStrToRules(fuzzyRulesString, rulesDef, rules, fuzzySetsNr, rulesNr, maxOutputNr) != 0)
|
---|
44 | return 0; //error
|
---|
45 | }
|
---|
46 | else
|
---|
47 | return 0; //error
|
---|
48 |
|
---|
49 | setChannelCount(countOuts(neuro->owner, neuro));
|
---|
50 | return 1; //success
|
---|
51 | }
|
---|
52 |
|
---|
53 | NI_FuzzyNeuro::~NI_FuzzyNeuro()
|
---|
54 | {
|
---|
55 | if(rules) //delete rows and columns of **rules
|
---|
56 | {
|
---|
57 | for (int i=0; i<rulesNr; i++) SAFEDELETEARRAY(rules[i])
|
---|
58 | SAFEDELETEARRAY(rules)
|
---|
59 | }
|
---|
60 | SAFEDELETEARRAY(defuzzParam)
|
---|
61 | SAFEDELETEARRAY(rulesDef)
|
---|
62 | SAFEDELETEARRAY(fuzzySets)
|
---|
63 | }
|
---|
64 |
|
---|
65 | int NI_FuzzyNeuro::GetFuzzySetParam(int set_nr, double &left, double &midleft, double &midright, double &right)
|
---|
66 | {
|
---|
67 | if ( (set_nr>=0) && (set_nr<fuzzySetsNr) )
|
---|
68 | {
|
---|
69 | left = fuzzySets[4*set_nr];
|
---|
70 | midleft = fuzzySets[4*set_nr+1];
|
---|
71 | midright = fuzzySets[4*set_nr+2];
|
---|
72 | right = fuzzySets[4*set_nr+3];
|
---|
73 | return 0;
|
---|
74 | }
|
---|
75 | else
|
---|
76 | return 1;
|
---|
77 | };
|
---|
78 |
|
---|
79 | /** Function conduct fuzzyfication of inputs and calculates - according to rules - crisp multi-channel output */
|
---|
80 | void NI_FuzzyNeuro::go()
|
---|
81 | {
|
---|
82 | if (Fuzzyfication()!=0)
|
---|
83 | return;
|
---|
84 | if (Defuzzyfication()!=0)
|
---|
85 | return;
|
---|
86 | };
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Function conduct fuzzyfication process - calculates minimum membership function (of every input) for each rule,
|
---|
90 | * and writes results into defuzzParam - variable that contains data necessary for defuzzyfication
|
---|
91 | */
|
---|
92 | int NI_FuzzyNeuro::Fuzzyfication()
|
---|
93 | {
|
---|
94 | int i, j, nrIn, inputNr, nrFuzzySet;
|
---|
95 | double minimumCut; // actual minimal level of cut (= min. membership function)
|
---|
96 |
|
---|
97 | // sets defuzzyfication parameters for each rule:
|
---|
98 | for (i=0; i<rulesNr; i++)
|
---|
99 | {
|
---|
100 | nrIn = rulesDef[2*i]; // nr of inputs in rule #i
|
---|
101 | minimumCut = 2; // the highest value of membership function is 1.0, so this value will definitely change
|
---|
102 | for (j=0; (j<nrIn)&&(minimumCut>0); j++) //minimumCut can not be <0, so if =0 then stop calculations
|
---|
103 | {
|
---|
104 | nrFuzzySet = rules[i][j*2 + 1]; // j*2 moves pointer through each output, +1 moves to nr of fuzzy set
|
---|
105 | inputNr = rules[i][j*2]; // as above but gives input number
|
---|
106 | minimumCut = min( minimumCut, TrapeziumFuzz(nrFuzzySet, getWeightedInputState(inputNr))); // value of membership function for this input and given fuzzy set
|
---|
107 | }
|
---|
108 | if ( (minimumCut>1) || (minimumCut<0) )
|
---|
109 | return 1;
|
---|
110 | defuzzParam[i] = minimumCut;
|
---|
111 | }
|
---|
112 | return 0;
|
---|
113 | };
|
---|
114 |
|
---|
115 | /**
|
---|
116 | * Function calculates value of the membership function of the set given by wchich_fuzzy_set for given crisp value input_val
|
---|
117 | * In other words, this function fuzzyficates given crisp value with given fuzzy set, returning it's membership function
|
---|
118 | * @param which_fuzzy_set - 0 < number of set < fuzzySetsNr
|
---|
119 | * @param input_val - crisp value of input in range <-1; 1>
|
---|
120 | * @return value of membership function (of given input for given set) in range <0;1> or, if error occur, negative value
|
---|
121 | */
|
---|
122 | double NI_FuzzyNeuro::TrapeziumFuzz(int which_fuzzy_set, double input_val)
|
---|
123 | {
|
---|
124 | double range=0, left=0, midleft=0, midright=0, right=0;
|
---|
125 |
|
---|
126 | if ( (which_fuzzy_set < 0) || (which_fuzzy_set > fuzzySetsNr) )
|
---|
127 | return -2;
|
---|
128 | if ( (input_val < -1) || (input_val > 1) )
|
---|
129 | return -3;
|
---|
130 |
|
---|
131 | if (GetFuzzySetParam(which_fuzzy_set, left, midleft, midright, right) != 0)
|
---|
132 | return -4;
|
---|
133 |
|
---|
134 | if ( (input_val < left) || (input_val > right) ) // greather than right value
|
---|
135 | return 0;
|
---|
136 | else if ( (input_val >= midleft) && (input_val <= midright) ) // in the core of fuzzy set
|
---|
137 | return 1;
|
---|
138 | else if ( (input_val >= left) && (input_val < midleft) ) // at the left side of trapezium
|
---|
139 | {
|
---|
140 | range = fabs(midleft - left);
|
---|
141 | return fabs(input_val-left)/((range>0)?range:1); // quotient of distance between input and extreme left point of trapezium and range of rising side, or 1
|
---|
142 | }
|
---|
143 | else if ( (input_val > midright) && (input_val <= right) ) // at the right side of trapezium
|
---|
144 | {
|
---|
145 | range = fabs(right - midright);
|
---|
146 | return fabs(right-input_val)/((range>0)?range:1); // quotient of distance between input and extreme right point of trapezium and range of falling side, or 1
|
---|
147 | };
|
---|
148 |
|
---|
149 | // should not occur
|
---|
150 | return 0;
|
---|
151 |
|
---|
152 | };
|
---|
153 |
|
---|
154 | /**
|
---|
155 | * Function conducts defuzzyfication process: multi-channel output values are calculates with singleton method (method of high).
|
---|
156 | * For each rules, all outputs fuzzy sets are taken and cut at 'cut-level', that is at minumum membership function (of current rule).
|
---|
157 | * For all neuro pseudo-outputs, answer is calculated according to prior computations.
|
---|
158 | * In fact, there is one output with multi-channel answer and appropriate values are given to right channels.
|
---|
159 | */
|
---|
160 | int NI_FuzzyNeuro::Defuzzyfication()
|
---|
161 | {
|
---|
162 | int i, j, nrIn, nrOut, out, set, outputsNr;
|
---|
163 | double *numerators, *denominators, midleft, midright, unimp;
|
---|
164 |
|
---|
165 | outputsNr = getChannelCount();
|
---|
166 |
|
---|
167 | numerators = new double[outputsNr];
|
---|
168 | denominators = new double[outputsNr];
|
---|
169 |
|
---|
170 | for(i=0;i<outputsNr;i++) numerators[i] = denominators[i] = 0;
|
---|
171 |
|
---|
172 | // for each rule...
|
---|
173 | for (i=0; i<rulesNr; i++)
|
---|
174 | {
|
---|
175 | nrIn = rulesDef[2*i]; // number of inputs in rule #i
|
---|
176 | nrOut = rulesDef[2*i + 1]; // number of outputs in rule #i
|
---|
177 | // ...calculate each output's product of middle fuzzy set value and minimum membership function (numerator) and sum of minimum membership function (denominator)
|
---|
178 | for (j=0; j<nrOut; j++)
|
---|
179 | {
|
---|
180 | out = rules[i][2*nrIn + 2*j]; //number of j-output
|
---|
181 | set = rules[i][2*nrIn + 2*j + 1]; //number of fuzzy set attributed to j-output
|
---|
182 | if (GetFuzzySetParam(set, unimp, midleft, midright, unimp) != 0) // gets range of core of given fuzzy set
|
---|
183 | { SAFEDELETEARRAY(denominators) SAFEDELETEARRAY(numerators) return 1; }
|
---|
184 | //defuzzParam[i] = minimum membership function for rule #i - calculated in fuzzyfication block
|
---|
185 | // defuzzyfication method of singletons (high): (fuzzy set modal value) * (minimum membership value)
|
---|
186 | numerators[out] += ((midleft + midright)/2.0) * defuzzParam[i];
|
---|
187 | denominators[out] += defuzzParam[i];
|
---|
188 | }
|
---|
189 | }
|
---|
190 |
|
---|
191 | for (i=0; i<outputsNr; i++)
|
---|
192 | {
|
---|
193 | if (denominators[i] == 0)
|
---|
194 | setState(0, i);
|
---|
195 | else
|
---|
196 | setState(numerators[i]/denominators[i], i);
|
---|
197 | }
|
---|
198 |
|
---|
199 | SAFEDELETEARRAY(denominators)
|
---|
200 | SAFEDELETEARRAY(numerators)
|
---|
201 |
|
---|
202 | return 0;
|
---|
203 | };
|
---|
204 |
|
---|