1 | // One modification by macko in FormatScientific(): use 3 digits of exponent only if necessary (e+123), otherwise use two if necessary (e+45), otherwise use one (e+6).
|
---|
2 | // This is consistent with java and javascript, and partially with python (which never uses one digit, only two or three).
|
---|
3 | // To always print 3 digits in exponent (zero-padding if necessary), uncomment:
|
---|
4 | // #define PRINTFLOAT_DRAGON4_ALWAYS_3_DIGIT_EXPONENT
|
---|
5 |
|
---|
6 |
|
---|
7 | /******************************************************************************
|
---|
8 | Copyright (c) 2014 Ryan Juckett
|
---|
9 | http://www.ryanjuckett.com/
|
---|
10 |
|
---|
11 | This software is provided 'as-is', without any express or implied
|
---|
12 | warranty. In no event will the authors be held liable for any damages
|
---|
13 | arising from the use of this software.
|
---|
14 |
|
---|
15 | Permission is granted to anyone to use this software for any purpose,
|
---|
16 | including commercial applications, and to alter it and redistribute it
|
---|
17 | freely, subject to the following restrictions:
|
---|
18 |
|
---|
19 | 1. The origin of this software must not be misrepresented; you must not
|
---|
20 | claim that you wrote the original software. If you use this software
|
---|
21 | in a product, an acknowledgment in the product documentation would be
|
---|
22 | appreciated but is not required.
|
---|
23 |
|
---|
24 | 2. Altered source versions must be plainly marked as such, and must not be
|
---|
25 | misrepresented as being the original software.
|
---|
26 |
|
---|
27 | 3. This notice may not be removed or altered from any source
|
---|
28 | distribution.
|
---|
29 | ******************************************************************************/
|
---|
30 |
|
---|
31 | #include "PrintFloat.h"
|
---|
32 | #include "Dragon4.h"
|
---|
33 | #include "MathDragon4.h"
|
---|
34 |
|
---|
35 | #include <string.h>
|
---|
36 |
|
---|
37 | //******************************************************************************
|
---|
38 | // Helper union to decompose a 32-bit IEEE float.
|
---|
39 | // sign: 1 bit
|
---|
40 | // exponent: 8 bits
|
---|
41 | // mantissa: 23 bits
|
---|
42 | //******************************************************************************
|
---|
43 | union tFloatUnion32
|
---|
44 | {
|
---|
45 | tB IsNegative() const { return (m_integer >> 31) != 0; }
|
---|
46 | tU32 GetExponent() const { return (m_integer >> 23) & 0xFF; }
|
---|
47 | tU32 GetMantissa() const { return m_integer & 0x7FFFFF; }
|
---|
48 |
|
---|
49 | tF32 m_floatingPoint;
|
---|
50 | tU32 m_integer;
|
---|
51 | };
|
---|
52 |
|
---|
53 | //******************************************************************************
|
---|
54 | // Helper union to decompose a 64-bit IEEE float.
|
---|
55 | // sign: 1 bit
|
---|
56 | // exponent: 11 bits
|
---|
57 | // mantissa: 52 bits
|
---|
58 | //******************************************************************************
|
---|
59 | union tFloatUnion64
|
---|
60 | {
|
---|
61 | tB IsNegative() const { return (m_integer >> 63) != 0; }
|
---|
62 | tU32 GetExponent() const { return (m_integer >> 52) & 0x7FF; }
|
---|
63 | tU64 GetMantissa() const { return m_integer & 0xFFFFFFFFFFFFFull; }
|
---|
64 |
|
---|
65 | tF64 m_floatingPoint;
|
---|
66 | tU64 m_integer;
|
---|
67 | };
|
---|
68 |
|
---|
69 | //******************************************************************************
|
---|
70 | // Outputs the positive number with positional notation: ddddd.dddd
|
---|
71 | // The output is always NUL terminated and the output length (not including the
|
---|
72 | // NUL) is returned.
|
---|
73 | //******************************************************************************
|
---|
74 | tU32 FormatPositional
|
---|
75 | (
|
---|
76 | tC8 * pOutBuffer, // buffer to output into
|
---|
77 | tU32 bufferSize, // maximum characters that can be printed to pOutBuffer
|
---|
78 | tU64 mantissa, // value significand
|
---|
79 | tS32 exponent, // value exponent in base 2
|
---|
80 | tU32 mantissaHighBitIdx, // index of the highest set mantissa bit
|
---|
81 | tB hasUnequalMargins, // is the high margin twice as large as the low margin
|
---|
82 | tS32 precision // Negative prints as many digits as are needed for a unique
|
---|
83 | // number. Positive specifies the maximum number of
|
---|
84 | // significant digits to print past the decimal point.
|
---|
85 | )
|
---|
86 | {
|
---|
87 | RJ_ASSERT(bufferSize > 0);
|
---|
88 |
|
---|
89 | tS32 printExponent;
|
---|
90 | tU32 numPrintDigits;
|
---|
91 |
|
---|
92 | tU32 maxPrintLen = bufferSize - 1;
|
---|
93 |
|
---|
94 | if (precision < 0)
|
---|
95 | {
|
---|
96 | numPrintDigits = Dragon4( mantissa,
|
---|
97 | exponent,
|
---|
98 | mantissaHighBitIdx,
|
---|
99 | hasUnequalMargins,
|
---|
100 | CutoffMode_Unique,
|
---|
101 | 0,
|
---|
102 | pOutBuffer,
|
---|
103 | maxPrintLen,
|
---|
104 | &printExponent );
|
---|
105 | }
|
---|
106 | else
|
---|
107 | {
|
---|
108 | numPrintDigits = Dragon4( mantissa,
|
---|
109 | exponent,
|
---|
110 | mantissaHighBitIdx,
|
---|
111 | hasUnequalMargins,
|
---|
112 | CutoffMode_FractionLength,
|
---|
113 | precision,
|
---|
114 | pOutBuffer,
|
---|
115 | maxPrintLen,
|
---|
116 | &printExponent );
|
---|
117 | }
|
---|
118 |
|
---|
119 | RJ_ASSERT( numPrintDigits > 0 );
|
---|
120 | RJ_ASSERT( numPrintDigits <= bufferSize );
|
---|
121 |
|
---|
122 | // track the number of digits past the decimal point that have been printed
|
---|
123 | tU32 numFractionDigits = 0;
|
---|
124 |
|
---|
125 | // if output has a whole number
|
---|
126 | if (printExponent >= 0)
|
---|
127 | {
|
---|
128 | // leave the whole number at the start of the buffer
|
---|
129 | tU32 numWholeDigits = printExponent+1;
|
---|
130 | if (numPrintDigits < numWholeDigits)
|
---|
131 | {
|
---|
132 | // don't overflow the buffer
|
---|
133 | if (numWholeDigits > maxPrintLen)
|
---|
134 | numWholeDigits = maxPrintLen;
|
---|
135 |
|
---|
136 | // add trailing zeros up to the decimal point
|
---|
137 | for ( ; numPrintDigits < numWholeDigits; ++numPrintDigits )
|
---|
138 | pOutBuffer[numPrintDigits] = '0';
|
---|
139 | }
|
---|
140 | // insert the decimal point prior to the fraction
|
---|
141 | else if (numPrintDigits > (tU32)numWholeDigits)
|
---|
142 | {
|
---|
143 | numFractionDigits = numPrintDigits - numWholeDigits;
|
---|
144 | tU32 maxFractionDigits = maxPrintLen - numWholeDigits - 1;
|
---|
145 | if (numFractionDigits > maxFractionDigits)
|
---|
146 | numFractionDigits = maxFractionDigits;
|
---|
147 |
|
---|
148 | memmove(pOutBuffer + numWholeDigits + 1, pOutBuffer + numWholeDigits, numFractionDigits);
|
---|
149 | pOutBuffer[numWholeDigits] = '.';
|
---|
150 | numPrintDigits = numWholeDigits + 1 + numFractionDigits;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 | // shift out the fraction to make room for the leading zeros
|
---|
156 | if (maxPrintLen > 2)
|
---|
157 | {
|
---|
158 | tU32 numFractionZeros = (tU32)-printExponent - 1;
|
---|
159 | tU32 maxFractionZeros = maxPrintLen - 2;
|
---|
160 | if (numFractionZeros > maxFractionZeros)
|
---|
161 | numFractionZeros = maxFractionZeros;
|
---|
162 |
|
---|
163 | tU32 digitsStartIdx = 2 + numFractionZeros;
|
---|
164 |
|
---|
165 | // shift the significant digits right such that there is room for leading zeros
|
---|
166 | numFractionDigits = numPrintDigits;
|
---|
167 | tU32 maxFractionDigits = maxPrintLen - digitsStartIdx;
|
---|
168 | if (numFractionDigits > maxFractionDigits)
|
---|
169 | numFractionDigits = maxFractionDigits;
|
---|
170 |
|
---|
171 | memmove(pOutBuffer + digitsStartIdx, pOutBuffer, numFractionDigits);
|
---|
172 |
|
---|
173 | // insert the leading zeros
|
---|
174 | for (tU32 i = 2; i < digitsStartIdx; ++i)
|
---|
175 | pOutBuffer[i] = '0';
|
---|
176 |
|
---|
177 | // update the counts
|
---|
178 | numFractionDigits += numFractionZeros;
|
---|
179 | numPrintDigits = numFractionDigits;
|
---|
180 | }
|
---|
181 |
|
---|
182 | // add the decimal point
|
---|
183 | if (maxPrintLen > 1)
|
---|
184 | {
|
---|
185 | pOutBuffer[1] = '.';
|
---|
186 | numPrintDigits += 1;
|
---|
187 | }
|
---|
188 |
|
---|
189 | // add the initial zero
|
---|
190 | if (maxPrintLen > 0)
|
---|
191 | {
|
---|
192 | pOutBuffer[0] = '0';
|
---|
193 | numPrintDigits += 1;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | // add trailing zeros up to precision length
|
---|
198 | if (precision > (tS32)numFractionDigits && numPrintDigits < maxPrintLen)
|
---|
199 | {
|
---|
200 | // add a decimal point if this is the first fractional digit we are printing
|
---|
201 | if (numFractionDigits == 0)
|
---|
202 | {
|
---|
203 | pOutBuffer[numPrintDigits++] = '.';
|
---|
204 | }
|
---|
205 |
|
---|
206 | // compute the number of trailing zeros needed
|
---|
207 | tU32 totalDigits = numPrintDigits + (precision - numFractionDigits);
|
---|
208 | if (totalDigits > maxPrintLen)
|
---|
209 | totalDigits = maxPrintLen;
|
---|
210 |
|
---|
211 | for ( ; numPrintDigits < totalDigits; ++numPrintDigits )
|
---|
212 | pOutBuffer[numPrintDigits] = '0';
|
---|
213 | }
|
---|
214 |
|
---|
215 | // terminate the buffer
|
---|
216 | RJ_ASSERT( numPrintDigits <= maxPrintLen );
|
---|
217 | pOutBuffer[numPrintDigits] = '\0';
|
---|
218 |
|
---|
219 | return numPrintDigits;
|
---|
220 | }
|
---|
221 |
|
---|
222 | //******************************************************************************
|
---|
223 | // Outputs the positive number with scientific notation: d.dddde[sign]ddd
|
---|
224 | // The output is always NUL terminated and the output length (not including the
|
---|
225 | // NUL) is returned.
|
---|
226 | //******************************************************************************
|
---|
227 | tU32 FormatScientific
|
---|
228 | (
|
---|
229 | tC8 * pOutBuffer, // buffer to output into
|
---|
230 | tU32 bufferSize, // maximum characters that can be printed to pOutBuffer
|
---|
231 | tU64 mantissa, // value significand
|
---|
232 | tS32 exponent, // value exponent in base 2
|
---|
233 | tU32 mantissaHighBitIdx, // index of the highest set mantissa bit
|
---|
234 | tB hasUnequalMargins, // is the high margin twice as large as the low margin
|
---|
235 | tS32 precision // Negative prints as many digits as are needed for a unique
|
---|
236 | // number. Positive specifies the maximum number of
|
---|
237 | // significant digits to print past the decimal point.
|
---|
238 | )
|
---|
239 | {
|
---|
240 | RJ_ASSERT(bufferSize > 0);
|
---|
241 |
|
---|
242 | tS32 printExponent;
|
---|
243 | tU32 numPrintDigits;
|
---|
244 |
|
---|
245 | if (precision < 0)
|
---|
246 | {
|
---|
247 | numPrintDigits = Dragon4( mantissa,
|
---|
248 | exponent,
|
---|
249 | mantissaHighBitIdx,
|
---|
250 | hasUnequalMargins,
|
---|
251 | CutoffMode_Unique,
|
---|
252 | 0,
|
---|
253 | pOutBuffer,
|
---|
254 | bufferSize,
|
---|
255 | &printExponent );
|
---|
256 | }
|
---|
257 | else
|
---|
258 | {
|
---|
259 | numPrintDigits = Dragon4( mantissa,
|
---|
260 | exponent,
|
---|
261 | mantissaHighBitIdx,
|
---|
262 | hasUnequalMargins,
|
---|
263 | CutoffMode_TotalLength,
|
---|
264 | precision + 1,
|
---|
265 | pOutBuffer,
|
---|
266 | bufferSize,
|
---|
267 | &printExponent );
|
---|
268 | }
|
---|
269 |
|
---|
270 | RJ_ASSERT( numPrintDigits > 0 );
|
---|
271 | RJ_ASSERT( numPrintDigits <= bufferSize );
|
---|
272 |
|
---|
273 | tC8 * pCurOut = pOutBuffer;
|
---|
274 |
|
---|
275 | // keep the whole number as the first digit
|
---|
276 | if (bufferSize > 1)
|
---|
277 | {
|
---|
278 | pCurOut += 1;
|
---|
279 | bufferSize -= 1;
|
---|
280 | }
|
---|
281 |
|
---|
282 | // insert the decimal point prior to the fractional number
|
---|
283 | tU32 numFractionDigits = numPrintDigits-1;
|
---|
284 | if (numFractionDigits > 0 && bufferSize > 1)
|
---|
285 | {
|
---|
286 | tU32 maxFractionDigits = bufferSize-2;
|
---|
287 | if (numFractionDigits > maxFractionDigits)
|
---|
288 | numFractionDigits = maxFractionDigits;
|
---|
289 |
|
---|
290 | memmove(pCurOut + 1, pCurOut, numFractionDigits);
|
---|
291 | pCurOut[0] = '.';
|
---|
292 | pCurOut += (1 + numFractionDigits);
|
---|
293 | bufferSize -= (1 + numFractionDigits);
|
---|
294 | }
|
---|
295 |
|
---|
296 | // add trailing zeros up to precision length
|
---|
297 | if (precision > (tS32)numFractionDigits && bufferSize > 1)
|
---|
298 | {
|
---|
299 | // add a decimal point if this is the first fractional digit we are printing
|
---|
300 | if (numFractionDigits == 0)
|
---|
301 | {
|
---|
302 | *pCurOut = '.';
|
---|
303 | ++pCurOut;
|
---|
304 | --bufferSize;
|
---|
305 | }
|
---|
306 |
|
---|
307 | // compute the number of trailing zeros needed
|
---|
308 | tU32 numZeros = (precision - numFractionDigits);
|
---|
309 | if (numZeros > bufferSize-1)
|
---|
310 | numZeros = bufferSize-1;
|
---|
311 |
|
---|
312 | for (tC8 * pEnd = pCurOut + numZeros; pCurOut < pEnd; ++pCurOut )
|
---|
313 | *pCurOut = '0';
|
---|
314 | }
|
---|
315 |
|
---|
316 | // print the exponent into a local buffer and copy into output buffer
|
---|
317 | if (bufferSize > 1)
|
---|
318 | {
|
---|
319 | tC8 exponentBuffer[5]; //we will need 3, 4 or 5 chars
|
---|
320 | exponentBuffer[0] = 'e';
|
---|
321 | if (printExponent >= 0)
|
---|
322 | {
|
---|
323 | exponentBuffer[1] = '+';
|
---|
324 | }
|
---|
325 | else
|
---|
326 | {
|
---|
327 | exponentBuffer[1] = '-';
|
---|
328 | printExponent = -printExponent;
|
---|
329 | }
|
---|
330 |
|
---|
331 | RJ_ASSERT(printExponent < 1000);
|
---|
332 | tU32 hundredsPlace = printExponent / 100;
|
---|
333 | tU32 tensPlace = (printExponent - hundredsPlace*100) / 10;
|
---|
334 | tU32 onesPlace = (printExponent - hundredsPlace*100 - tensPlace*10);
|
---|
335 |
|
---|
336 | // modified by macko: use 3 digits of exponent only if necessary (e+123), otherwise use two if necessary (e+45), otherwise use one (e+6)
|
---|
337 | unsigned int bufferIndex = 2;
|
---|
338 | #ifndef PRINTFLOAT_DRAGON4_ALWAYS_3_DIGIT_EXPONENT
|
---|
339 | if (hundredsPlace != 0) //3 digits needed
|
---|
340 | #endif
|
---|
341 | exponentBuffer[bufferIndex++] = (tC8)('0' + hundredsPlace);
|
---|
342 | #ifndef PRINTFLOAT_DRAGON4_ALWAYS_3_DIGIT_EXPONENT
|
---|
343 | if (hundredsPlace != 0 || tensPlace != 0) //2 digits needed
|
---|
344 | #endif
|
---|
345 | exponentBuffer[bufferIndex++] = (tC8)('0' + tensPlace);
|
---|
346 | exponentBuffer[bufferIndex++] = (tC8)('0' + onesPlace);
|
---|
347 | // now bufferIndex indicates how many characters of exponentBuffer were used
|
---|
348 |
|
---|
349 | // copy the exponent buffer into the output
|
---|
350 | tU32 maxExponentSize = bufferSize - 1;
|
---|
351 | tU32 exponentSize = (bufferIndex < maxExponentSize) ? bufferIndex : maxExponentSize;
|
---|
352 | memcpy( pCurOut, exponentBuffer, exponentSize );
|
---|
353 |
|
---|
354 | pCurOut += exponentSize;
|
---|
355 | bufferSize -= exponentSize;
|
---|
356 | }
|
---|
357 |
|
---|
358 | RJ_ASSERT( bufferSize > 0 );
|
---|
359 | pCurOut[0] = '\0';
|
---|
360 |
|
---|
361 | return pCurOut - pOutBuffer;
|
---|
362 | }
|
---|
363 |
|
---|
364 | //******************************************************************************
|
---|
365 | // Print a hexadecimal value with a given width.
|
---|
366 | // The output string is always NUL terminated and the string length (not
|
---|
367 | // including the NUL) is returned.
|
---|
368 | //******************************************************************************
|
---|
369 | static tU32 PrintHex(tC8 * pOutBuffer, tU32 bufferSize, tU64 value, tU32 width)
|
---|
370 | {
|
---|
371 | const tC8 digits[] = "0123456789abcdef";
|
---|
372 |
|
---|
373 | RJ_ASSERT(bufferSize > 0);
|
---|
374 |
|
---|
375 | tU32 maxPrintLen = bufferSize-1;
|
---|
376 | if (width > maxPrintLen)
|
---|
377 | width = maxPrintLen;
|
---|
378 |
|
---|
379 | tC8 * pCurOut = pOutBuffer;
|
---|
380 | while (width > 0)
|
---|
381 | {
|
---|
382 | --width;
|
---|
383 |
|
---|
384 | tU8 digit = (tU8)((value >> 4ull*(tU64)width) & 0xF);
|
---|
385 | *pCurOut = digits[digit];
|
---|
386 |
|
---|
387 | ++pCurOut;
|
---|
388 | }
|
---|
389 |
|
---|
390 | *pCurOut = '\0';
|
---|
391 | return pCurOut - pOutBuffer;
|
---|
392 | }
|
---|
393 |
|
---|
394 | //******************************************************************************
|
---|
395 | // Print special case values for infinities and NaNs.
|
---|
396 | // The output string is always NUL terminated and the string length (not
|
---|
397 | // including the NUL) is returned.
|
---|
398 | //******************************************************************************
|
---|
399 | static tU32 PrintInfNan(tC8 * pOutBuffer, tU32 bufferSize, tU64 mantissa, tU32 mantissaHexWidth)
|
---|
400 | {
|
---|
401 | RJ_ASSERT(bufferSize > 0);
|
---|
402 |
|
---|
403 | tU32 maxPrintLen = bufferSize-1;
|
---|
404 |
|
---|
405 | // Check for infinity
|
---|
406 | if (mantissa == 0)
|
---|
407 | {
|
---|
408 | // copy and make sure the buffer is terminated
|
---|
409 | tU32 printLen = (3 < maxPrintLen) ? 3 : maxPrintLen;
|
---|
410 | ::memcpy( pOutBuffer, "Inf", printLen );
|
---|
411 | pOutBuffer[printLen] = '\0';
|
---|
412 | return printLen;
|
---|
413 | }
|
---|
414 | else
|
---|
415 | {
|
---|
416 | // copy and make sure the buffer is terminated
|
---|
417 | tU32 printLen = (3 < maxPrintLen) ? 3 : maxPrintLen;
|
---|
418 | ::memcpy( pOutBuffer, "NaN", printLen );
|
---|
419 | pOutBuffer[printLen] = '\0';
|
---|
420 |
|
---|
421 | // append HEX value
|
---|
422 | if (maxPrintLen > 3)
|
---|
423 | printLen += PrintHex(pOutBuffer+3, bufferSize-3, mantissa, mantissaHexWidth);
|
---|
424 |
|
---|
425 | return printLen;
|
---|
426 | }
|
---|
427 | }
|
---|
428 |
|
---|
429 | //******************************************************************************
|
---|
430 | // Print a 32-bit floating-point number as a decimal string.
|
---|
431 | // The output string is always NUL terminated and the string length (not
|
---|
432 | // including the NUL) is returned.
|
---|
433 | //******************************************************************************
|
---|
434 | tU32 PrintFloat32
|
---|
435 | (
|
---|
436 | tC8 * pOutBuffer, // buffer to output into
|
---|
437 | tU32 bufferSize, // size of pOutBuffer
|
---|
438 | tF32 value, // value to print
|
---|
439 | tPrintFloatFormat format, // format to print with
|
---|
440 | tS32 precision // If negative, the minimum number of digits to represent a
|
---|
441 | // unique 32-bit floating point value is output. Otherwise,
|
---|
442 | // this is the number of digits to print past the decimal point.
|
---|
443 | )
|
---|
444 | {
|
---|
445 | if (bufferSize == 0)
|
---|
446 | return 0;
|
---|
447 |
|
---|
448 | if (bufferSize == 1)
|
---|
449 | {
|
---|
450 | pOutBuffer[0] = '\0';
|
---|
451 | return 0;
|
---|
452 | }
|
---|
453 |
|
---|
454 | // deconstruct the floating point value
|
---|
455 | tFloatUnion32 floatUnion;
|
---|
456 | floatUnion.m_floatingPoint = value;
|
---|
457 | tU32 floatExponent = floatUnion.GetExponent();
|
---|
458 | tU32 floatMantissa = floatUnion.GetMantissa();
|
---|
459 | tU32 prefixLength = 0;
|
---|
460 |
|
---|
461 | // output the sign
|
---|
462 | if (floatUnion.IsNegative())
|
---|
463 | {
|
---|
464 | pOutBuffer[0] = '-';
|
---|
465 | ++pOutBuffer;
|
---|
466 | --bufferSize;
|
---|
467 | ++prefixLength;
|
---|
468 | RJ_ASSERT(bufferSize > 0);
|
---|
469 | }
|
---|
470 |
|
---|
471 | // if this is a special value
|
---|
472 | if (floatExponent == 0xFF)
|
---|
473 | {
|
---|
474 | return PrintInfNan(pOutBuffer, bufferSize, floatMantissa, 6) + prefixLength;
|
---|
475 | }
|
---|
476 | // else this is a number
|
---|
477 | else
|
---|
478 | {
|
---|
479 | // factor the value into its parts
|
---|
480 | tU32 mantissa;
|
---|
481 | tS32 exponent;
|
---|
482 | tU32 mantissaHighBitIdx;
|
---|
483 | tB hasUnequalMargins;
|
---|
484 | if (floatExponent != 0)
|
---|
485 | {
|
---|
486 | // normalized
|
---|
487 | // The floating point equation is:
|
---|
488 | // value = (1 + mantissa/2^23) * 2 ^ (exponent-127)
|
---|
489 | // We convert the integer equation by factoring a 2^23 out of the exponent
|
---|
490 | // value = (1 + mantissa/2^23) * 2^23 * 2 ^ (exponent-127-23)
|
---|
491 | // value = (2^23 + mantissa) * 2 ^ (exponent-127-23)
|
---|
492 | // Because of the implied 1 in front of the mantissa we have 24 bits of precision.
|
---|
493 | // m = (2^23 + mantissa)
|
---|
494 | // e = (exponent-127-23)
|
---|
495 | mantissa = (1UL << 23) | floatMantissa;
|
---|
496 | exponent = floatExponent - 127 - 23;
|
---|
497 | mantissaHighBitIdx = 23;
|
---|
498 | hasUnequalMargins = (floatExponent != 1) && (floatMantissa == 0);
|
---|
499 | }
|
---|
500 | else
|
---|
501 | {
|
---|
502 | // denormalized
|
---|
503 | // The floating point equation is:
|
---|
504 | // value = (mantissa/2^23) * 2 ^ (1-127)
|
---|
505 | // We convert the integer equation by factoring a 2^23 out of the exponent
|
---|
506 | // value = (mantissa/2^23) * 2^23 * 2 ^ (1-127-23)
|
---|
507 | // value = mantissa * 2 ^ (1-127-23)
|
---|
508 | // We have up to 23 bits of precision.
|
---|
509 | // m = (mantissa)
|
---|
510 | // e = (1-127-23)
|
---|
511 | mantissa = floatMantissa;
|
---|
512 | exponent = 1 - 127 - 23;
|
---|
513 | mantissaHighBitIdx = LogBase2(mantissa);
|
---|
514 | hasUnequalMargins = false;
|
---|
515 | }
|
---|
516 |
|
---|
517 | // format the value
|
---|
518 | switch (format)
|
---|
519 | {
|
---|
520 | case PrintFloatFormat_Positional:
|
---|
521 | return FormatPositional( pOutBuffer,
|
---|
522 | bufferSize,
|
---|
523 | mantissa,
|
---|
524 | exponent,
|
---|
525 | mantissaHighBitIdx,
|
---|
526 | hasUnequalMargins,
|
---|
527 | precision ) + prefixLength;
|
---|
528 |
|
---|
529 | case PrintFloatFormat_Scientific:
|
---|
530 | return FormatScientific( pOutBuffer,
|
---|
531 | bufferSize,
|
---|
532 | mantissa,
|
---|
533 | exponent,
|
---|
534 | mantissaHighBitIdx,
|
---|
535 | hasUnequalMargins,
|
---|
536 | precision ) + prefixLength;
|
---|
537 |
|
---|
538 | default:
|
---|
539 | pOutBuffer[0] = '\0';
|
---|
540 | return 0;
|
---|
541 | }
|
---|
542 | }
|
---|
543 | }
|
---|
544 |
|
---|
545 | //******************************************************************************
|
---|
546 | // Print a 64-bit floating-point number as a decimal string.
|
---|
547 | // The output string is always NUL terminated and the string length (not
|
---|
548 | // including the NUL) is returned.
|
---|
549 | //******************************************************************************
|
---|
550 | tU32 PrintFloat64
|
---|
551 | (
|
---|
552 | tC8 * pOutBuffer, // buffer to output into
|
---|
553 | tU32 bufferSize, // size of pOutBuffer
|
---|
554 | tF64 value, // value to print
|
---|
555 | tPrintFloatFormat format, // format to print with
|
---|
556 | tS32 precision // If negative, the minimum number of digits to represent a
|
---|
557 | // unique 64-bit floating point value is output. Otherwise,
|
---|
558 | // this is the number of digits to print past the decimal point.
|
---|
559 | )
|
---|
560 | {
|
---|
561 | if (bufferSize == 0)
|
---|
562 | return 0;
|
---|
563 |
|
---|
564 | if (bufferSize == 1)
|
---|
565 | {
|
---|
566 | pOutBuffer[0] = '\0';
|
---|
567 | return 0;
|
---|
568 | }
|
---|
569 |
|
---|
570 | // deconstruct the floating point value
|
---|
571 | tFloatUnion64 floatUnion;
|
---|
572 | floatUnion.m_floatingPoint = value;
|
---|
573 | tU32 floatExponent = floatUnion.GetExponent();
|
---|
574 | tU64 floatMantissa = floatUnion.GetMantissa();
|
---|
575 | tU32 prefixLength = 0;
|
---|
576 |
|
---|
577 | // output the sign
|
---|
578 | if (floatUnion.IsNegative())
|
---|
579 | {
|
---|
580 | pOutBuffer[0] = '-';
|
---|
581 | ++pOutBuffer;
|
---|
582 | --bufferSize;
|
---|
583 | ++prefixLength;
|
---|
584 | RJ_ASSERT(bufferSize > 0);
|
---|
585 | }
|
---|
586 |
|
---|
587 | // if this is a special value
|
---|
588 | if (floatExponent == 0x7FF)
|
---|
589 | {
|
---|
590 | return PrintInfNan(pOutBuffer, bufferSize, floatMantissa, 13) + prefixLength;
|
---|
591 | }
|
---|
592 | // else this is a number
|
---|
593 | else
|
---|
594 | {
|
---|
595 | // factor the value into its parts
|
---|
596 | tU64 mantissa;
|
---|
597 | tS32 exponent;
|
---|
598 | tU32 mantissaHighBitIdx;
|
---|
599 | tB hasUnequalMargins;
|
---|
600 |
|
---|
601 | if (floatExponent != 0)
|
---|
602 | {
|
---|
603 | // normal
|
---|
604 | // The floating point equation is:
|
---|
605 | // value = (1 + mantissa/2^52) * 2 ^ (exponent-1023)
|
---|
606 | // We convert the integer equation by factoring a 2^52 out of the exponent
|
---|
607 | // value = (1 + mantissa/2^52) * 2^52 * 2 ^ (exponent-1023-52)
|
---|
608 | // value = (2^52 + mantissa) * 2 ^ (exponent-1023-52)
|
---|
609 | // Because of the implied 1 in front of the mantissa we have 53 bits of precision.
|
---|
610 | // m = (2^52 + mantissa)
|
---|
611 | // e = (exponent-1023+1-53)
|
---|
612 | mantissa = (1ull << 52) | floatMantissa;
|
---|
613 | exponent = floatExponent - 1023 - 52;
|
---|
614 | mantissaHighBitIdx = 52;
|
---|
615 | hasUnequalMargins = (floatExponent != 1) && (floatMantissa == 0);
|
---|
616 | }
|
---|
617 | else
|
---|
618 | {
|
---|
619 | // subnormal
|
---|
620 | // The floating point equation is:
|
---|
621 | // value = (mantissa/2^52) * 2 ^ (1-1023)
|
---|
622 | // We convert the integer equation by factoring a 2^52 out of the exponent
|
---|
623 | // value = (mantissa/2^52) * 2^52 * 2 ^ (1-1023-52)
|
---|
624 | // value = mantissa * 2 ^ (1-1023-52)
|
---|
625 | // We have up to 52 bits of precision.
|
---|
626 | // m = (mantissa)
|
---|
627 | // e = (1-1023-52)
|
---|
628 | mantissa = floatMantissa;
|
---|
629 | exponent = 1 - 1023 - 52;
|
---|
630 | mantissaHighBitIdx = LogBase2(mantissa);
|
---|
631 | hasUnequalMargins = false;
|
---|
632 | }
|
---|
633 |
|
---|
634 | // format the value
|
---|
635 | switch (format)
|
---|
636 | {
|
---|
637 | case PrintFloatFormat_Positional:
|
---|
638 | return FormatPositional( pOutBuffer,
|
---|
639 | bufferSize,
|
---|
640 | mantissa,
|
---|
641 | exponent,
|
---|
642 | mantissaHighBitIdx,
|
---|
643 | hasUnequalMargins,
|
---|
644 | precision ) + prefixLength;
|
---|
645 |
|
---|
646 | case PrintFloatFormat_Scientific:
|
---|
647 | return FormatScientific( pOutBuffer,
|
---|
648 | bufferSize,
|
---|
649 | mantissa,
|
---|
650 | exponent,
|
---|
651 | mantissaHighBitIdx,
|
---|
652 | hasUnequalMargins,
|
---|
653 | precision ) + prefixLength;
|
---|
654 |
|
---|
655 | default:
|
---|
656 | pOutBuffer[0] = '\0';
|
---|
657 | return 0;
|
---|
658 | }
|
---|
659 | }
|
---|
660 | }
|
---|