1 | /******************************************************************************
|
---|
2 | Copyright (c) 2014 Ryan Juckett
|
---|
3 | http://www.ryanjuckett.com/
|
---|
4 |
|
---|
5 | This software is provided 'as-is', without any express or implied
|
---|
6 | warranty. In no event will the authors be held liable for any damages
|
---|
7 | arising from the use of this software.
|
---|
8 |
|
---|
9 | Permission is granted to anyone to use this software for any purpose,
|
---|
10 | including commercial applications, and to alter it and redistribute it
|
---|
11 | freely, subject to the following restrictions:
|
---|
12 |
|
---|
13 | 1. The origin of this software must not be misrepresented; you must not
|
---|
14 | claim that you wrote the original software. If you use this software
|
---|
15 | in a product, an acknowledgment in the product documentation would be
|
---|
16 | appreciated but is not required.
|
---|
17 |
|
---|
18 | 2. Altered source versions must be plainly marked as such, and must not be
|
---|
19 | misrepresented as being the original software.
|
---|
20 |
|
---|
21 | 3. This notice may not be removed or altered from any source
|
---|
22 | distribution.
|
---|
23 | ******************************************************************************/
|
---|
24 |
|
---|
25 | #include "Dragon4.h"
|
---|
26 | #include "MathDragon4.h"
|
---|
27 | #include <math.h>
|
---|
28 |
|
---|
29 | //******************************************************************************
|
---|
30 | // Maximum number of 32 bit blocks needed in high precision arithmetic
|
---|
31 | // to print out 64 bit IEEE floating point values.
|
---|
32 | //******************************************************************************
|
---|
33 | const tU32 c_BigInt_MaxBlocks = 35;
|
---|
34 |
|
---|
35 | //******************************************************************************
|
---|
36 | // This structure stores a high precision unsigned integer. It uses a buffer
|
---|
37 | // of 32 bit integer blocks along with a length. The lowest bits of the integer
|
---|
38 | // are stored at the start of the buffer and the length is set to the minimum
|
---|
39 | // value that contains the integer. Thus, there are never any zero blocks at the
|
---|
40 | // end of the buffer.
|
---|
41 | //******************************************************************************
|
---|
42 | struct tBigInt
|
---|
43 | {
|
---|
44 | // Copy integer
|
---|
45 | tBigInt & operator=(const tBigInt &rhs)
|
---|
46 | {
|
---|
47 | tU32 length = rhs.m_length;
|
---|
48 | tU32 * pLhsCur = m_blocks;
|
---|
49 | for (const tU32 *pRhsCur = rhs.m_blocks, *pRhsEnd = pRhsCur + length;
|
---|
50 | pRhsCur != pRhsEnd;
|
---|
51 | ++pLhsCur, ++pRhsCur)
|
---|
52 | {
|
---|
53 | *pLhsCur = *pRhsCur;
|
---|
54 | }
|
---|
55 | m_length = length;
|
---|
56 | return *this;
|
---|
57 | }
|
---|
58 |
|
---|
59 | // Data accessors
|
---|
60 | tU32 GetLength() const { return m_length; }
|
---|
61 | tU32 GetBlock(tU32 idx) const { return m_blocks[idx]; }
|
---|
62 |
|
---|
63 | // Zero helper functions
|
---|
64 | void SetZero() { m_length = 0; }
|
---|
65 | tB IsZero() const { return m_length == 0; }
|
---|
66 |
|
---|
67 | // Basic type accessors
|
---|
68 | void SetU64(tU64 val)
|
---|
69 | {
|
---|
70 | if (val > 0xFFFFFFFF)
|
---|
71 | {
|
---|
72 | m_blocks[0] = val & 0xFFFFFFFF;
|
---|
73 | m_blocks[1] = (val >> 32) & 0xFFFFFFFF;
|
---|
74 | m_length = 2;
|
---|
75 | }
|
---|
76 | else if (val != 0)
|
---|
77 | {
|
---|
78 | m_blocks[0] = val & 0xFFFFFFFF;
|
---|
79 | m_length = 1;
|
---|
80 | }
|
---|
81 | else
|
---|
82 | {
|
---|
83 | m_length = 0;
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | void SetU32(tU32 val)
|
---|
88 | {
|
---|
89 | if (val != 0)
|
---|
90 | {
|
---|
91 | m_blocks[0] = val;
|
---|
92 | m_length = (val != 0);
|
---|
93 | }
|
---|
94 | else
|
---|
95 | {
|
---|
96 | m_length = 0;
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | tU32 GetU32() const { return (m_length == 0) ? 0 : m_blocks[0]; }
|
---|
101 |
|
---|
102 | // Member data
|
---|
103 | tU32 m_length;
|
---|
104 | tU32 m_blocks[c_BigInt_MaxBlocks];
|
---|
105 | };
|
---|
106 |
|
---|
107 | //******************************************************************************
|
---|
108 | // Returns 0 if (lhs = rhs), negative if (lhs < rhs), positive if (lhs > rhs)
|
---|
109 | //******************************************************************************
|
---|
110 | static tS32 BigInt_Compare(const tBigInt & lhs, const tBigInt & rhs)
|
---|
111 | {
|
---|
112 | // A bigger length implies a bigger number.
|
---|
113 | tS32 lengthDiff = lhs.m_length - rhs.m_length;
|
---|
114 | if (lengthDiff != 0)
|
---|
115 | return lengthDiff;
|
---|
116 |
|
---|
117 | // Compare blocks one by one from high to low.
|
---|
118 | for (tS32 i = lhs.m_length - 1; i >= 0; --i)
|
---|
119 | {
|
---|
120 | if (lhs.m_blocks[i] == rhs.m_blocks[i])
|
---|
121 | continue;
|
---|
122 | else if (lhs.m_blocks[i] > rhs.m_blocks[i])
|
---|
123 | return 1;
|
---|
124 | else
|
---|
125 | return -1;
|
---|
126 | }
|
---|
127 |
|
---|
128 | // no blocks differed
|
---|
129 | return 0;
|
---|
130 | }
|
---|
131 |
|
---|
132 | //******************************************************************************
|
---|
133 | // result = lhs + rhs
|
---|
134 | //******************************************************************************
|
---|
135 | static void BigInt_Add(tBigInt * pResult, const tBigInt & lhs, const tBigInt & rhs)
|
---|
136 | {
|
---|
137 | // determine which operand has the smaller length
|
---|
138 | const tBigInt * pLarge;
|
---|
139 | const tBigInt * pSmall;
|
---|
140 | if (lhs.m_length < rhs.m_length)
|
---|
141 | {
|
---|
142 | pSmall = &lhs;
|
---|
143 | pLarge = &rhs;
|
---|
144 | }
|
---|
145 | else
|
---|
146 | {
|
---|
147 | pSmall = &rhs;
|
---|
148 | pLarge = &lhs;
|
---|
149 | }
|
---|
150 |
|
---|
151 | const tU32 largeLen = pLarge->m_length;
|
---|
152 | const tU32 smallLen = pSmall->m_length;
|
---|
153 |
|
---|
154 | // The output will be at least as long as the largest input
|
---|
155 | pResult->m_length = largeLen;
|
---|
156 |
|
---|
157 | // Add each block and add carry the overflow to the next block
|
---|
158 | tU64 carry = 0;
|
---|
159 | const tU32 * pLargeCur = pLarge->m_blocks;
|
---|
160 | const tU32 * pLargeEnd = pLargeCur + largeLen;
|
---|
161 | const tU32 * pSmallCur = pSmall->m_blocks;
|
---|
162 | const tU32 * pSmallEnd = pSmallCur + smallLen;
|
---|
163 | tU32 * pResultCur = pResult->m_blocks;
|
---|
164 | while (pSmallCur != pSmallEnd)
|
---|
165 | {
|
---|
166 | tU64 sum = carry + (tU64)(*pLargeCur) + (tU64)(*pSmallCur);
|
---|
167 | carry = sum >> 32;
|
---|
168 | (*pResultCur) = sum & 0xFFFFFFFF;
|
---|
169 | ++pLargeCur;
|
---|
170 | ++pSmallCur;
|
---|
171 | ++pResultCur;
|
---|
172 | }
|
---|
173 |
|
---|
174 | // Add the carry to any blocks that only exist in the large operand
|
---|
175 | while (pLargeCur != pLargeEnd)
|
---|
176 | {
|
---|
177 | tU64 sum = carry + (tU64)(*pLargeCur);
|
---|
178 | carry = sum >> 32;
|
---|
179 | (*pResultCur) = sum & 0xFFFFFFFF;
|
---|
180 | ++pLargeCur;
|
---|
181 | ++pResultCur;
|
---|
182 | }
|
---|
183 |
|
---|
184 | // If there's still a carry, append a new block
|
---|
185 | if (carry != 0)
|
---|
186 | {
|
---|
187 | RJ_ASSERT(carry == 1);
|
---|
188 | RJ_ASSERT((tU32)(pResultCur - pResult->m_blocks) == largeLen && (largeLen < c_BigInt_MaxBlocks));
|
---|
189 | *pResultCur = 1;
|
---|
190 | pResult->m_length = largeLen + 1;
|
---|
191 | }
|
---|
192 | else
|
---|
193 | {
|
---|
194 | pResult->m_length = largeLen;
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | //******************************************************************************
|
---|
199 | // result = lhs * rhs
|
---|
200 | //******************************************************************************
|
---|
201 | static void BigInt_Multiply(tBigInt * pResult, const tBigInt &lhs, const tBigInt &rhs)
|
---|
202 | {
|
---|
203 | RJ_ASSERT( pResult != &lhs && pResult != &rhs );
|
---|
204 |
|
---|
205 | // determine which operand has the smaller length
|
---|
206 | const tBigInt * pLarge;
|
---|
207 | const tBigInt * pSmall;
|
---|
208 | if (lhs.m_length < rhs.m_length)
|
---|
209 | {
|
---|
210 | pSmall = &lhs;
|
---|
211 | pLarge = &rhs;
|
---|
212 | }
|
---|
213 | else
|
---|
214 | {
|
---|
215 | pSmall = &rhs;
|
---|
216 | pLarge = &lhs;
|
---|
217 | }
|
---|
218 |
|
---|
219 | // set the maximum possible result length
|
---|
220 | tU32 maxResultLen = pLarge->m_length + pSmall->m_length;
|
---|
221 | RJ_ASSERT( maxResultLen <= c_BigInt_MaxBlocks );
|
---|
222 |
|
---|
223 | // clear the result data
|
---|
224 | for(tU32 * pCur = pResult->m_blocks, *pEnd = pCur + maxResultLen; pCur != pEnd; ++pCur)
|
---|
225 | *pCur = 0;
|
---|
226 |
|
---|
227 | // perform standard long multiplication
|
---|
228 | const tU32 *pLargeBeg = pLarge->m_blocks;
|
---|
229 | const tU32 *pLargeEnd = pLargeBeg + pLarge->m_length;
|
---|
230 |
|
---|
231 | // for each small block
|
---|
232 | tU32 *pResultStart = pResult->m_blocks;
|
---|
233 | for(const tU32 *pSmallCur = pSmall->m_blocks, *pSmallEnd = pSmallCur + pSmall->m_length;
|
---|
234 | pSmallCur != pSmallEnd;
|
---|
235 | ++pSmallCur, ++pResultStart)
|
---|
236 | {
|
---|
237 | // if non-zero, multiply against all the large blocks and add into the result
|
---|
238 | const tU32 multiplier = *pSmallCur;
|
---|
239 | if (multiplier != 0)
|
---|
240 | {
|
---|
241 | const tU32 *pLargeCur = pLargeBeg;
|
---|
242 | tU32 *pResultCur = pResultStart;
|
---|
243 | tU64 carry = 0;
|
---|
244 | do
|
---|
245 | {
|
---|
246 | tU64 product = (*pResultCur) + (*pLargeCur)*(tU64)multiplier + carry;
|
---|
247 | carry = product >> 32;
|
---|
248 | *pResultCur = product & 0xFFFFFFFF;
|
---|
249 | ++pLargeCur;
|
---|
250 | ++pResultCur;
|
---|
251 | } while(pLargeCur != pLargeEnd);
|
---|
252 |
|
---|
253 | RJ_ASSERT(pResultCur < pResult->m_blocks + maxResultLen);
|
---|
254 | *pResultCur = (tU32)(carry & 0xFFFFFFFF);
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 | // check if the terminating block has no set bits
|
---|
259 | if (maxResultLen > 0 && pResult->m_blocks[maxResultLen - 1] == 0)
|
---|
260 | pResult->m_length = maxResultLen-1;
|
---|
261 | else
|
---|
262 | pResult->m_length = maxResultLen;
|
---|
263 | }
|
---|
264 |
|
---|
265 | //******************************************************************************
|
---|
266 | // result = lhs * rhs
|
---|
267 | //******************************************************************************
|
---|
268 | static void BigInt_Multiply(tBigInt * pResult, const tBigInt & lhs, tU32 rhs)
|
---|
269 | {
|
---|
270 | // perform long multiplication
|
---|
271 | tU32 carry = 0;
|
---|
272 | tU32 *pResultCur = pResult->m_blocks;
|
---|
273 | const tU32 *pLhsCur = lhs.m_blocks;
|
---|
274 | const tU32 *pLhsEnd = lhs.m_blocks + lhs.m_length;
|
---|
275 | for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++pResultCur )
|
---|
276 | {
|
---|
277 | tU64 product = (tU64)(*pLhsCur) * rhs + carry;
|
---|
278 | *pResultCur = (tU32)(product & 0xFFFFFFFF);
|
---|
279 | carry = product >> 32;
|
---|
280 | }
|
---|
281 |
|
---|
282 | // if there is a remaining carry, grow the array
|
---|
283 | if (carry != 0)
|
---|
284 | {
|
---|
285 | // grow the array
|
---|
286 | RJ_ASSERT(lhs.m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
287 | *pResultCur = (tU32)carry;
|
---|
288 | pResult->m_length = lhs.m_length + 1;
|
---|
289 | }
|
---|
290 | else
|
---|
291 | {
|
---|
292 | pResult->m_length = lhs.m_length;
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | //******************************************************************************
|
---|
297 | // result = in * 2
|
---|
298 | //******************************************************************************
|
---|
299 | static void BigInt_Multiply2(tBigInt * pResult, const tBigInt &in)
|
---|
300 | {
|
---|
301 | // shift all the blocks by one
|
---|
302 | tU32 carry = 0;
|
---|
303 |
|
---|
304 | tU32 *pResultCur = pResult->m_blocks;
|
---|
305 | const tU32 *pLhsCur = in.m_blocks;
|
---|
306 | const tU32 *pLhsEnd = in.m_blocks + in.m_length;
|
---|
307 | for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++pResultCur )
|
---|
308 | {
|
---|
309 | tU32 cur = *pLhsCur;
|
---|
310 | *pResultCur = (cur << 1) | carry;
|
---|
311 | carry = cur >> 31;
|
---|
312 | }
|
---|
313 |
|
---|
314 | if (carry != 0)
|
---|
315 | {
|
---|
316 | // grow the array
|
---|
317 | RJ_ASSERT(in.m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
318 | *pResultCur = carry;
|
---|
319 | pResult->m_length = in.m_length + 1;
|
---|
320 | }
|
---|
321 | else
|
---|
322 | {
|
---|
323 | pResult->m_length = in.m_length;
|
---|
324 | }
|
---|
325 | }
|
---|
326 |
|
---|
327 | //******************************************************************************
|
---|
328 | // result = result * 2
|
---|
329 | //******************************************************************************
|
---|
330 | static void BigInt_Multiply2(tBigInt * pResult)
|
---|
331 | {
|
---|
332 | // shift all the blocks by one
|
---|
333 | tU32 carry = 0;
|
---|
334 |
|
---|
335 | tU32 *pCur = pResult->m_blocks;
|
---|
336 | tU32 *pEnd = pResult->m_blocks + pResult->m_length;
|
---|
337 | for ( ; pCur != pEnd; ++pCur )
|
---|
338 | {
|
---|
339 | tU32 cur = *pCur;
|
---|
340 | *pCur = (cur << 1) | carry;
|
---|
341 | carry = cur >> 31;
|
---|
342 | }
|
---|
343 |
|
---|
344 | if (carry != 0)
|
---|
345 | {
|
---|
346 | // grow the array
|
---|
347 | RJ_ASSERT(pResult->m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
348 | *pCur = carry;
|
---|
349 | ++pResult->m_length;
|
---|
350 | }
|
---|
351 | }
|
---|
352 |
|
---|
353 | //******************************************************************************
|
---|
354 | // result = result * 10
|
---|
355 | //******************************************************************************
|
---|
356 | static void BigInt_Multiply10(tBigInt * pResult)
|
---|
357 | {
|
---|
358 | // multiply all the blocks
|
---|
359 | tU64 carry = 0;
|
---|
360 |
|
---|
361 | tU32 *pCur = pResult->m_blocks;
|
---|
362 | tU32 *pEnd = pResult->m_blocks + pResult->m_length;
|
---|
363 | for ( ; pCur != pEnd; ++pCur )
|
---|
364 | {
|
---|
365 | tU64 product = (tU64)(*pCur) * 10ull + carry;
|
---|
366 | (*pCur) = (tU32)(product & 0xFFFFFFFF);
|
---|
367 | carry = product >> 32;
|
---|
368 | }
|
---|
369 |
|
---|
370 | if (carry != 0)
|
---|
371 | {
|
---|
372 | // grow the array
|
---|
373 | RJ_ASSERT(pResult->m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
374 | *pCur = (tU32)carry;
|
---|
375 | ++pResult->m_length;
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 | //******************************************************************************
|
---|
380 | //******************************************************************************
|
---|
381 | static tU32 g_PowerOf10_U32[] =
|
---|
382 | {
|
---|
383 | 1, // 10 ^ 0
|
---|
384 | 10, // 10 ^ 1
|
---|
385 | 100, // 10 ^ 2
|
---|
386 | 1000, // 10 ^ 3
|
---|
387 | 10000, // 10 ^ 4
|
---|
388 | 100000, // 10 ^ 5
|
---|
389 | 1000000, // 10 ^ 6
|
---|
390 | 10000000, // 10 ^ 7
|
---|
391 | };
|
---|
392 |
|
---|
393 | //******************************************************************************
|
---|
394 | // Note: This has a lot of wasted space in the big integer structures of the
|
---|
395 | // early table entries. It wouldn't be terribly hard to make the multiply
|
---|
396 | // function work on integer pointers with an array length instead of
|
---|
397 | // the tBigInt struct which would allow us to store a minimal amount of
|
---|
398 | // data here.
|
---|
399 | //******************************************************************************
|
---|
400 | static tBigInt g_PowerOf10_Big[] =
|
---|
401 | {
|
---|
402 | // 10 ^ 8
|
---|
403 | { 1, { 100000000 } },
|
---|
404 | // 10 ^ 16
|
---|
405 | { 2, { 0x6fc10000, 0x002386f2 } },
|
---|
406 | // 10 ^ 32
|
---|
407 | { 4, { 0x00000000, 0x85acef81, 0x2d6d415b, 0x000004ee, } },
|
---|
408 | // 10 ^ 64
|
---|
409 | { 7, { 0x00000000, 0x00000000, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x00184f03, } },
|
---|
410 | // 10 ^ 128
|
---|
411 | { 14, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x2e953e01, 0x03df9909, 0x0f1538fd,
|
---|
412 | 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, 0xe91f2603, 0x0000024e, } },
|
---|
413 | // 10 ^ 256
|
---|
414 | { 27, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
---|
415 | 0x00000000, 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70,
|
---|
416 | 0xd595d80f, 0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0,
|
---|
417 | 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, 0xf46eeddc, 0x5fdcefce, 0x000553f7, } }
|
---|
418 | };
|
---|
419 |
|
---|
420 | //******************************************************************************
|
---|
421 | // result = 10^exponent
|
---|
422 | //******************************************************************************
|
---|
423 | static void BigInt_Pow10(tBigInt * pResult, tU32 exponent)
|
---|
424 | {
|
---|
425 | // make sure the exponent is within the bounds of the lookup table data
|
---|
426 | RJ_ASSERT(exponent < 512);
|
---|
427 |
|
---|
428 | // create two temporary values to reduce large integer copy operations
|
---|
429 | tBigInt temp1;
|
---|
430 | tBigInt temp2;
|
---|
431 | tBigInt *pCurTemp = &temp1;
|
---|
432 | tBigInt *pNextTemp = &temp2;
|
---|
433 |
|
---|
434 | // initialize the result by looking up a 32-bit power of 10 corresponding to the first 3 bits
|
---|
435 | tU32 smallExponent = exponent & 0x7;
|
---|
436 | pCurTemp->SetU32(g_PowerOf10_U32[smallExponent]);
|
---|
437 |
|
---|
438 | // remove the low bits that we used for the 32-bit lookup table
|
---|
439 | exponent >>= 3;
|
---|
440 | tU32 tableIdx = 0;
|
---|
441 |
|
---|
442 | // while there are remaining bits in the exponent to be processed
|
---|
443 | while (exponent != 0)
|
---|
444 | {
|
---|
445 | // if the current bit is set, multiply it with the corresponding power of 10
|
---|
446 | if(exponent & 1)
|
---|
447 | {
|
---|
448 | // multiply into the next temporary
|
---|
449 | BigInt_Multiply( pNextTemp, *pCurTemp, g_PowerOf10_Big[tableIdx] );
|
---|
450 |
|
---|
451 | // swap to the next temporary
|
---|
452 | tBigInt * pSwap = pCurTemp;
|
---|
453 | pCurTemp = pNextTemp;
|
---|
454 | pNextTemp = pSwap;
|
---|
455 | }
|
---|
456 |
|
---|
457 | // advance to the next bit
|
---|
458 | ++tableIdx;
|
---|
459 | exponent >>= 1;
|
---|
460 | }
|
---|
461 |
|
---|
462 | // output the result
|
---|
463 | *pResult = *pCurTemp;
|
---|
464 | }
|
---|
465 |
|
---|
466 | //******************************************************************************
|
---|
467 | // result = in * 10^exponent
|
---|
468 | //******************************************************************************
|
---|
469 | static void BigInt_MultiplyPow10(tBigInt * pResult, const tBigInt & in, tU32 exponent)
|
---|
470 | {
|
---|
471 | // make sure the exponent is within the bounds of the lookup table data
|
---|
472 | RJ_ASSERT(exponent < 512);
|
---|
473 |
|
---|
474 | // create two temporary values to reduce large integer copy operations
|
---|
475 | tBigInt temp1;
|
---|
476 | tBigInt temp2;
|
---|
477 | tBigInt *pCurTemp = &temp1;
|
---|
478 | tBigInt *pNextTemp = &temp2;
|
---|
479 |
|
---|
480 | // initialize the result by looking up a 32-bit power of 10 corresponding to the first 3 bits
|
---|
481 | tU32 smallExponent = exponent & 0x7;
|
---|
482 | if (smallExponent != 0)
|
---|
483 | {
|
---|
484 | BigInt_Multiply( pCurTemp, in, g_PowerOf10_U32[smallExponent] );
|
---|
485 | }
|
---|
486 | else
|
---|
487 | {
|
---|
488 | *pCurTemp = in;
|
---|
489 | }
|
---|
490 |
|
---|
491 | // remove the low bits that we used for the 32-bit lookup table
|
---|
492 | exponent >>= 3;
|
---|
493 | tU32 tableIdx = 0;
|
---|
494 |
|
---|
495 | // while there are remaining bits in the exponent to be processed
|
---|
496 | while (exponent != 0)
|
---|
497 | {
|
---|
498 | // if the current bit is set, multiply it with the corresponding power of 10
|
---|
499 | if(exponent & 1)
|
---|
500 | {
|
---|
501 | // multiply into the next temporary
|
---|
502 | BigInt_Multiply( pNextTemp, *pCurTemp, g_PowerOf10_Big[tableIdx] );
|
---|
503 |
|
---|
504 | // swap to the next temporary
|
---|
505 | tBigInt * pSwap = pCurTemp;
|
---|
506 | pCurTemp = pNextTemp;
|
---|
507 | pNextTemp = pSwap;
|
---|
508 | }
|
---|
509 |
|
---|
510 | // advance to the next bit
|
---|
511 | ++tableIdx;
|
---|
512 | exponent >>= 1;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // output the result
|
---|
516 | *pResult = *pCurTemp;
|
---|
517 | }
|
---|
518 |
|
---|
519 | //******************************************************************************
|
---|
520 | // result = 2^exponent
|
---|
521 | //******************************************************************************
|
---|
522 | static inline void BigInt_Pow2(tBigInt * pResult, tU32 exponent)
|
---|
523 | {
|
---|
524 | tU32 blockIdx = exponent / 32;
|
---|
525 | RJ_ASSERT( blockIdx < c_BigInt_MaxBlocks );
|
---|
526 |
|
---|
527 | for ( tU32 i = 0; i <= blockIdx; ++i)
|
---|
528 | pResult->m_blocks[i] = 0;
|
---|
529 |
|
---|
530 | pResult->m_length = blockIdx + 1;
|
---|
531 |
|
---|
532 | tU32 bitIdx = (exponent % 32);
|
---|
533 | pResult->m_blocks[blockIdx] |= (1 << bitIdx);
|
---|
534 | }
|
---|
535 |
|
---|
536 | //******************************************************************************
|
---|
537 | // This function will divide two large numbers under the assumption that the
|
---|
538 | // result is within the range [0,10) and the input numbers have been shifted
|
---|
539 | // to satisfy:
|
---|
540 | // - The highest block of the divisor is greater than or equal to 8 such that
|
---|
541 | // there is enough precision to make an accurate first guess at the quotient.
|
---|
542 | // - The highest block of the divisor is less than the maximum value on an
|
---|
543 | // unsigned 32-bit integer such that we can safely increment without overflow.
|
---|
544 | // - The dividend does not contain more blocks than the divisor such that we
|
---|
545 | // can estimate the quotient by dividing the equivalently placed high blocks.
|
---|
546 | //
|
---|
547 | // quotient = floor(dividend / divisor)
|
---|
548 | // remainder = dividend - quotient*divisor
|
---|
549 | //
|
---|
550 | // pDividend is updated to be the remainder and the quotient is returned.
|
---|
551 | //******************************************************************************
|
---|
552 | static tU32 BigInt_DivideWithRemainder_MaxQuotient9(tBigInt * pDividend, const tBigInt & divisor)
|
---|
553 | {
|
---|
554 | // Check that the divisor has been correctly shifted into range and that it is not
|
---|
555 | // smaller than the dividend in length.
|
---|
556 | RJ_ASSERT( !divisor.IsZero() &&
|
---|
557 | divisor.m_blocks[divisor.m_length-1] >= 8 &&
|
---|
558 | divisor.m_blocks[divisor.m_length-1] < 0xFFFFFFFF &&
|
---|
559 | pDividend->m_length <= divisor.m_length );
|
---|
560 |
|
---|
561 | // If the dividend is smaller than the divisor, the quotient is zero and the divisor is already
|
---|
562 | // the remainder.
|
---|
563 | tU32 length = divisor.m_length;
|
---|
564 | if (pDividend->m_length < divisor.m_length)
|
---|
565 | return 0;
|
---|
566 |
|
---|
567 | const tU32 * pFinalDivisorBlock = divisor.m_blocks + length - 1;
|
---|
568 | tU32 * pFinalDividendBlock = pDividend->m_blocks + length - 1;
|
---|
569 |
|
---|
570 | // Compute an estimated quotient based on the high block value. This will either match the actual quotient or
|
---|
571 | // undershoot by one.
|
---|
572 | tU32 quotient = *pFinalDividendBlock / (*pFinalDivisorBlock + 1);
|
---|
573 | RJ_ASSERT(quotient <= 9);
|
---|
574 |
|
---|
575 | // Divide out the estimated quotient
|
---|
576 | if (quotient != 0)
|
---|
577 | {
|
---|
578 | // dividend = dividend - divisor*quotient
|
---|
579 | const tU32 *pDivisorCur = divisor.m_blocks;
|
---|
580 | tU32 *pDividendCur = pDividend->m_blocks;
|
---|
581 |
|
---|
582 | tU64 borrow = 0;
|
---|
583 | tU64 carry = 0;
|
---|
584 | do
|
---|
585 | {
|
---|
586 | tU64 product = (tU64)*pDivisorCur * (tU64)quotient + carry;
|
---|
587 | carry = product >> 32;
|
---|
588 |
|
---|
589 | tU64 difference = (tU64)*pDividendCur - (product & 0xFFFFFFFF) - borrow;
|
---|
590 | borrow = (difference >> 32) & 1;
|
---|
591 |
|
---|
592 | *pDividendCur = difference & 0xFFFFFFFF;
|
---|
593 |
|
---|
594 | ++pDivisorCur;
|
---|
595 | ++pDividendCur;
|
---|
596 | } while(pDivisorCur <= pFinalDivisorBlock);
|
---|
597 |
|
---|
598 | // remove all leading zero blocks from dividend
|
---|
599 | while (length > 0 && pDividend->m_blocks[length - 1] == 0)
|
---|
600 | --length;
|
---|
601 |
|
---|
602 | pDividend->m_length = length;
|
---|
603 | }
|
---|
604 |
|
---|
605 | // If the dividend is still larger than the divisor, we overshot our estimate quotient. To correct,
|
---|
606 | // we increment the quotient and subtract one more divisor from the dividend.
|
---|
607 | if ( BigInt_Compare(*pDividend, divisor) >= 0 )
|
---|
608 | {
|
---|
609 | ++quotient;
|
---|
610 |
|
---|
611 | // dividend = dividend - divisor
|
---|
612 | const tU32 *pDivisorCur = divisor.m_blocks;
|
---|
613 | tU32 *pDividendCur = pDividend->m_blocks;
|
---|
614 |
|
---|
615 | tU64 borrow = 0;
|
---|
616 | do
|
---|
617 | {
|
---|
618 | tU64 difference = (tU64)*pDividendCur - (tU64)*pDivisorCur - borrow;
|
---|
619 | borrow = (difference >> 32) & 1;
|
---|
620 |
|
---|
621 | *pDividendCur = difference & 0xFFFFFFFF;
|
---|
622 |
|
---|
623 | ++pDivisorCur;
|
---|
624 | ++pDividendCur;
|
---|
625 | } while(pDivisorCur <= pFinalDivisorBlock);
|
---|
626 |
|
---|
627 | // remove all leading zero blocks from dividend
|
---|
628 | while (length > 0 && pDividend->m_blocks[length - 1] == 0)
|
---|
629 | --length;
|
---|
630 |
|
---|
631 | pDividend->m_length = length;
|
---|
632 | }
|
---|
633 |
|
---|
634 | return quotient;
|
---|
635 | }
|
---|
636 |
|
---|
637 | //******************************************************************************
|
---|
638 | // result = result << shift
|
---|
639 | //******************************************************************************
|
---|
640 | static void BigInt_ShiftLeft(tBigInt * pResult, tU32 shift)
|
---|
641 | {
|
---|
642 | RJ_ASSERT( shift != 0 );
|
---|
643 |
|
---|
644 | tU32 shiftBlocks = shift / 32;
|
---|
645 | tU32 shiftBits = shift % 32;
|
---|
646 |
|
---|
647 | // process blocks high to low so that we can safely process in place
|
---|
648 | const tU32 * pInBlocks = pResult->m_blocks;
|
---|
649 | tS32 inLength = pResult->m_length;
|
---|
650 | RJ_ASSERT( inLength + shiftBlocks <= c_BigInt_MaxBlocks );
|
---|
651 |
|
---|
652 | // check if the shift is block aligned
|
---|
653 | if (shiftBits == 0)
|
---|
654 | {
|
---|
655 | // copy blocks from high to low
|
---|
656 | for (tU32 * pInCur = pResult->m_blocks + inLength - 1, *pOutCur = pInCur + shiftBlocks;
|
---|
657 | pInCur >= pInBlocks;
|
---|
658 | --pInCur, --pOutCur)
|
---|
659 | {
|
---|
660 | *pOutCur = *pInCur;
|
---|
661 | }
|
---|
662 |
|
---|
663 | // zero the remaining low blocks
|
---|
664 | for ( tU32 i = 0; i < shiftBlocks; ++i)
|
---|
665 | pResult->m_blocks[i] = 0;
|
---|
666 |
|
---|
667 | pResult->m_length += shiftBlocks;
|
---|
668 | }
|
---|
669 | // else we need to shift partial blocks
|
---|
670 | else
|
---|
671 | {
|
---|
672 | tS32 inBlockIdx = inLength - 1;
|
---|
673 | tU32 outBlockIdx = inLength + shiftBlocks;
|
---|
674 |
|
---|
675 | // set the length to hold the shifted blocks
|
---|
676 | RJ_ASSERT( outBlockIdx < c_BigInt_MaxBlocks );
|
---|
677 | pResult->m_length = outBlockIdx + 1;
|
---|
678 |
|
---|
679 | // output the initial blocks
|
---|
680 | const tU32 lowBitsShift = (32 - shiftBits);
|
---|
681 | tU32 highBits = 0;
|
---|
682 | tU32 block = pResult->m_blocks[inBlockIdx];
|
---|
683 | tU32 lowBits = block >> lowBitsShift;
|
---|
684 | while ( inBlockIdx > 0 )
|
---|
685 | {
|
---|
686 | pResult->m_blocks[outBlockIdx] = highBits | lowBits;
|
---|
687 | highBits = block << shiftBits;
|
---|
688 |
|
---|
689 | --inBlockIdx;
|
---|
690 | --outBlockIdx;
|
---|
691 |
|
---|
692 | block = pResult->m_blocks[inBlockIdx];
|
---|
693 | lowBits = block >> lowBitsShift;
|
---|
694 | }
|
---|
695 |
|
---|
696 | // output the final blocks
|
---|
697 | RJ_ASSERT( outBlockIdx == shiftBlocks + 1 );
|
---|
698 | pResult->m_blocks[outBlockIdx] = highBits | lowBits;
|
---|
699 | pResult->m_blocks[outBlockIdx-1] = block << shiftBits;
|
---|
700 |
|
---|
701 | // zero the remaining low blocks
|
---|
702 | for ( tU32 i = 0; i < shiftBlocks; ++i)
|
---|
703 | pResult->m_blocks[i] = 0;
|
---|
704 |
|
---|
705 | // check if the terminating block has no set bits
|
---|
706 | if (pResult->m_blocks[pResult->m_length - 1] == 0)
|
---|
707 | --pResult->m_length;
|
---|
708 | }
|
---|
709 | }
|
---|
710 |
|
---|
711 | //******************************************************************************
|
---|
712 | // This is an implementation the Dragon4 algorithm to convert a binary number
|
---|
713 | // in floating point format to a decimal number in string format. The function
|
---|
714 | // returns the number of digits written to the output buffer and the output is
|
---|
715 | // not NUL terminated.
|
---|
716 | //
|
---|
717 | // The floating point input value is (mantissa * 2^exponent).
|
---|
718 | //
|
---|
719 | // See the following papers for more information on the algorithm:
|
---|
720 | // "How to Print Floating-Point Numbers Accurately"
|
---|
721 | // Steele and White
|
---|
722 | // http://kurtstephens.com/files/p372-steele.pdf
|
---|
723 | // "Printing Floating-Point Numbers Quickly and Accurately"
|
---|
724 | // Burger and Dybvig
|
---|
725 | // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656&rep=rep1&type=pdf
|
---|
726 | //******************************************************************************
|
---|
727 | tU32 Dragon4
|
---|
728 | (
|
---|
729 | const tU64 mantissa, // value significand
|
---|
730 | const tS32 exponent, // value exponent in base 2
|
---|
731 | const tU32 mantissaHighBitIdx, // index of the highest set mantissa bit
|
---|
732 | const tB hasUnequalMargins, // is the high margin twice as large as the low margin
|
---|
733 | const tCutoffMode cutoffMode, // how to determine output length
|
---|
734 | tU32 cutoffNumber, // parameter to the selected cutoffMode
|
---|
735 | tC8 * pOutBuffer, // buffer to output into
|
---|
736 | tU32 bufferSize, // maximum characters that can be printed to pOutBuffer
|
---|
737 | tS32 * pOutExponent // the base 10 exponent of the first digit
|
---|
738 | )
|
---|
739 | {
|
---|
740 | tC8 * pCurDigit = pOutBuffer;
|
---|
741 |
|
---|
742 | RJ_ASSERT( bufferSize > 0 );
|
---|
743 |
|
---|
744 | // if the mantissa is zero, the value is zero regardless of the exponent
|
---|
745 | if (mantissa == 0)
|
---|
746 | {
|
---|
747 | *pCurDigit = '0';
|
---|
748 | *pOutExponent = 0;
|
---|
749 | return 1;
|
---|
750 | }
|
---|
751 |
|
---|
752 | // compute the initial state in integral form such that
|
---|
753 | // value = scaledValue / scale
|
---|
754 | // marginLow = scaledMarginLow / scale
|
---|
755 | tBigInt scale; // positive scale applied to value and margin such that they can be
|
---|
756 | // represented as whole numbers
|
---|
757 | tBigInt scaledValue; // scale * mantissa
|
---|
758 | tBigInt scaledMarginLow; // scale * 0.5 * (distance between this floating-point number and its
|
---|
759 | // immediate lower value)
|
---|
760 |
|
---|
761 | // For normalized IEEE floating point values, each time the exponent is incremented the margin also
|
---|
762 | // doubles. That creates a subset of transition numbers where the high margin is twice the size of
|
---|
763 | // the low margin.
|
---|
764 | tBigInt * pScaledMarginHigh;
|
---|
765 | tBigInt optionalMarginHigh;
|
---|
766 |
|
---|
767 | if ( hasUnequalMargins )
|
---|
768 | {
|
---|
769 | // if we have no fractional component
|
---|
770 | if (exponent > 0)
|
---|
771 | {
|
---|
772 | // 1) Expand the input value by multiplying out the mantissa and exponent. This represents
|
---|
773 | // the input value in its whole number representation.
|
---|
774 | // 2) Apply an additional scale of 2 such that later comparisons against the margin values
|
---|
775 | // are simplified.
|
---|
776 | // 3) Set the margin value to the lowest mantissa bit's scale.
|
---|
777 |
|
---|
778 | // scaledValue = 2 * 2 * mantissa*2^exponent
|
---|
779 | scaledValue.SetU64( 4 * mantissa );
|
---|
780 | BigInt_ShiftLeft( &scaledValue, exponent );
|
---|
781 |
|
---|
782 | // scale = 2 * 2 * 1
|
---|
783 | scale.SetU32( 4 );
|
---|
784 |
|
---|
785 | // scaledMarginLow = 2 * 2^(exponent-1)
|
---|
786 | BigInt_Pow2( &scaledMarginLow, exponent );
|
---|
787 |
|
---|
788 | // scaledMarginHigh = 2 * 2 * 2^(exponent-1)
|
---|
789 | BigInt_Pow2( &optionalMarginHigh, exponent + 1 );
|
---|
790 | }
|
---|
791 | // else we have a fractional exponent
|
---|
792 | else
|
---|
793 | {
|
---|
794 | // In order to track the mantissa data as an integer, we store it as is with a large scale
|
---|
795 |
|
---|
796 | // scaledValue = 2 * 2 * mantissa
|
---|
797 | scaledValue.SetU64( 4 * mantissa );
|
---|
798 |
|
---|
799 | // scale = 2 * 2 * 2^(-exponent)
|
---|
800 | BigInt_Pow2(&scale, -exponent + 2 );
|
---|
801 |
|
---|
802 | // scaledMarginLow = 2 * 2^(-1)
|
---|
803 | scaledMarginLow.SetU32( 1 );
|
---|
804 |
|
---|
805 | // scaledMarginHigh = 2 * 2 * 2^(-1)
|
---|
806 | optionalMarginHigh.SetU32( 2 );
|
---|
807 | }
|
---|
808 |
|
---|
809 | // the high and low margins are different
|
---|
810 | pScaledMarginHigh = &optionalMarginHigh;
|
---|
811 | }
|
---|
812 | else
|
---|
813 | {
|
---|
814 | // if we have no fractional component
|
---|
815 | if (exponent > 0)
|
---|
816 | {
|
---|
817 | // 1) Expand the input value by multiplying out the mantissa and exponent. This represents
|
---|
818 | // the input value in its whole number representation.
|
---|
819 | // 2) Apply an additional scale of 2 such that later comparisons against the margin values
|
---|
820 | // are simplified.
|
---|
821 | // 3) Set the margin value to the lowest mantissa bit's scale.
|
---|
822 |
|
---|
823 | // scaledValue = 2 * mantissa*2^exponent
|
---|
824 | scaledValue.SetU64( 2 * mantissa );
|
---|
825 | BigInt_ShiftLeft( &scaledValue, exponent );
|
---|
826 |
|
---|
827 | // scale = 2 * 1
|
---|
828 | scale.SetU32( 2 );
|
---|
829 |
|
---|
830 | // scaledMarginLow = 2 * 2^(exponent-1)
|
---|
831 | BigInt_Pow2( &scaledMarginLow, exponent );
|
---|
832 | }
|
---|
833 | // else we have a fractional exponent
|
---|
834 | else
|
---|
835 | {
|
---|
836 | // In order to track the mantissa data as an integer, we store it as is with a large scale
|
---|
837 |
|
---|
838 | // scaledValue = 2 * mantissa
|
---|
839 | scaledValue.SetU64( 2 * mantissa );
|
---|
840 |
|
---|
841 | // scale = 2 * 2^(-exponent)
|
---|
842 | BigInt_Pow2(&scale, -exponent + 1 );
|
---|
843 |
|
---|
844 | // scaledMarginLow = 2 * 2^(-1)
|
---|
845 | scaledMarginLow.SetU32( 1 );
|
---|
846 | }
|
---|
847 |
|
---|
848 | // the high and low margins are equal
|
---|
849 | pScaledMarginHigh = &scaledMarginLow;
|
---|
850 | }
|
---|
851 |
|
---|
852 | // Compute an estimate for digitExponent that will be correct or undershoot by one.
|
---|
853 | // This optimization is based on the paper "Printing Floating-Point Numbers Quickly and Accurately"
|
---|
854 | // by Burger and Dybvig http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656&rep=rep1&type=pdf
|
---|
855 | // We perform an additional subtraction of 0.69 to increase the frequency of a failed estimate
|
---|
856 | // because that lets us take a faster branch in the code. 0.69 is chosen because 0.69 + log10(2) is
|
---|
857 | // less than one by a reasonable epsilon that will account for any floating point error.
|
---|
858 | //
|
---|
859 | // We want to set digitExponent to floor(log10(v)) + 1
|
---|
860 | // v = mantissa*2^exponent
|
---|
861 | // log2(v) = log2(mantissa) + exponent;
|
---|
862 | // log10(v) = log2(v) * log10(2)
|
---|
863 | // floor(log2(v)) = mantissaHighBitIdx + exponent;
|
---|
864 | // log10(v) - log10(2) < (mantissaHighBitIdx + exponent) * log10(2) <= log10(v)
|
---|
865 | // log10(v) < (mantissaHighBitIdx + exponent) * log10(2) + log10(2) <= log10(v) + log10(2)
|
---|
866 | // floor( log10(v) ) < ceil( (mantissaHighBitIdx + exponent) * log10(2) ) <= floor( log10(v) ) + 1
|
---|
867 | const tF64 log10_2 = 0.30102999566398119521373889472449;
|
---|
868 | tS32 digitExponent = (tS32)(ceil(tF64((tS32)mantissaHighBitIdx + exponent) * log10_2 - 0.69));
|
---|
869 |
|
---|
870 | // if the digit exponent is smaller than the smallest desired digit for fractional cutoff,
|
---|
871 | // pull the digit back into legal range at which point we will round to the appropriate value.
|
---|
872 | // Note that while our value for digitExponent is still an estimate, this is safe because it
|
---|
873 | // only increases the number. This will either correct digitExponent to an accurate value or it
|
---|
874 | // will clamp it above the accurate value.
|
---|
875 | if (cutoffMode == CutoffMode_FractionLength && digitExponent <= -(tS32)cutoffNumber)
|
---|
876 | {
|
---|
877 | digitExponent = -(tS32)cutoffNumber + 1;
|
---|
878 | }
|
---|
879 |
|
---|
880 | // Divide value by 10^digitExponent.
|
---|
881 | if (digitExponent > 0)
|
---|
882 | {
|
---|
883 | // The exponent is positive creating a division so we multiply up the scale.
|
---|
884 | tBigInt temp;
|
---|
885 | BigInt_MultiplyPow10( &temp, scale, digitExponent );
|
---|
886 | scale = temp;
|
---|
887 | }
|
---|
888 | else if (digitExponent < 0)
|
---|
889 | {
|
---|
890 | // The exponent is negative creating a multiplication so we multiply up the scaledValue,
|
---|
891 | // scaledMarginLow and scaledMarginHigh.
|
---|
892 | tBigInt pow10;
|
---|
893 | BigInt_Pow10( &pow10, -digitExponent);
|
---|
894 |
|
---|
895 | tBigInt temp;
|
---|
896 | BigInt_Multiply( &temp, scaledValue, pow10);
|
---|
897 | scaledValue = temp;
|
---|
898 |
|
---|
899 | BigInt_Multiply( &temp, scaledMarginLow, pow10);
|
---|
900 | scaledMarginLow = temp;
|
---|
901 |
|
---|
902 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
903 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
904 | }
|
---|
905 |
|
---|
906 | // If (value >= 1), our estimate for digitExponent was too low
|
---|
907 | if( BigInt_Compare(scaledValue,scale) >= 0 )
|
---|
908 | {
|
---|
909 | // The exponent estimate was incorrect.
|
---|
910 | // Increment the exponent and don't perform the premultiply needed
|
---|
911 | // for the first loop iteration.
|
---|
912 | digitExponent = digitExponent + 1;
|
---|
913 | }
|
---|
914 | else
|
---|
915 | {
|
---|
916 | // The exponent estimate was correct.
|
---|
917 | // Multiply larger by the output base to prepare for the first loop iteration.
|
---|
918 | BigInt_Multiply10( &scaledValue );
|
---|
919 | BigInt_Multiply10( &scaledMarginLow );
|
---|
920 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
921 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
922 | }
|
---|
923 |
|
---|
924 | // Compute the cutoff exponent (the exponent of the final digit to print).
|
---|
925 | // Default to the maximum size of the output buffer.
|
---|
926 | tS32 cutoffExponent = digitExponent - bufferSize;
|
---|
927 | switch(cutoffMode)
|
---|
928 | {
|
---|
929 | // print digits until we pass the accuracy margin limits or buffer size
|
---|
930 | case CutoffMode_Unique:
|
---|
931 | break;
|
---|
932 |
|
---|
933 | // print cutoffNumber of digits or until we reach the buffer size
|
---|
934 | case CutoffMode_TotalLength:
|
---|
935 | {
|
---|
936 | tS32 desiredCutoffExponent = digitExponent - (tS32)cutoffNumber;
|
---|
937 | if (desiredCutoffExponent > cutoffExponent)
|
---|
938 | cutoffExponent = desiredCutoffExponent;
|
---|
939 | }
|
---|
940 | break;
|
---|
941 |
|
---|
942 | // print cutoffNumber digits past the decimal point or until we reach the buffer size
|
---|
943 | case CutoffMode_FractionLength:
|
---|
944 | {
|
---|
945 | tS32 desiredCutoffExponent = -(tS32)cutoffNumber;
|
---|
946 | if (desiredCutoffExponent > cutoffExponent)
|
---|
947 | cutoffExponent = desiredCutoffExponent;
|
---|
948 | }
|
---|
949 | break;
|
---|
950 | }
|
---|
951 |
|
---|
952 | // Output the exponent of the first digit we will print
|
---|
953 | *pOutExponent = digitExponent-1;
|
---|
954 |
|
---|
955 | // In preparation for calling BigInt_DivideWithRemainder_MaxQuotient9(),
|
---|
956 | // we need to scale up our values such that the highest block of the denominator
|
---|
957 | // is greater than or equal to 8. We also need to guarantee that the numerator
|
---|
958 | // can never have a length greater than the denominator after each loop iteration.
|
---|
959 | // This requires the highest block of the denominator to be less than or equal to
|
---|
960 | // 429496729 which is the highest number that can be multiplied by 10 without
|
---|
961 | // overflowing to a new block.
|
---|
962 | RJ_ASSERT( scale.GetLength() > 0 );
|
---|
963 | tU32 hiBlock = scale.GetBlock( scale.GetLength() - 1 );
|
---|
964 | if (hiBlock < 8 || hiBlock > 429496729)
|
---|
965 | {
|
---|
966 | // Perform a bit shift on all values to get the highest block of the denominator into
|
---|
967 | // the range [8,429496729]. We are more likely to make accurate quotient estimations
|
---|
968 | // in BigInt_DivideWithRemainder_MaxQuotient9() with higher denominator values so
|
---|
969 | // we shift the denominator to place the highest bit at index 27 of the highest block.
|
---|
970 | // This is safe because (2^28 - 1) = 268435455 which is less than 429496729. This means
|
---|
971 | // that all values with a highest bit at index 27 are within range.
|
---|
972 | tU32 hiBlockLog2 = LogBase2(hiBlock);
|
---|
973 | RJ_ASSERT(hiBlockLog2 < 3 || hiBlockLog2 > 27);
|
---|
974 | tU32 shift = (32 + 27 - hiBlockLog2) % 32;
|
---|
975 |
|
---|
976 | BigInt_ShiftLeft( &scale, shift );
|
---|
977 | BigInt_ShiftLeft( &scaledValue, shift);
|
---|
978 | BigInt_ShiftLeft( &scaledMarginLow, shift);
|
---|
979 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
980 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
981 | }
|
---|
982 |
|
---|
983 | // These values are used to inspect why the print loop terminated so we can properly
|
---|
984 | // round the final digit.
|
---|
985 | tB low; // did the value get within marginLow distance from zero
|
---|
986 | tB high; // did the value get within marginHigh distance from one
|
---|
987 | tU32 outputDigit; // current digit being output
|
---|
988 |
|
---|
989 | if (cutoffMode == CutoffMode_Unique)
|
---|
990 | {
|
---|
991 | // For the unique cutoff mode, we will try to print until we have reached a level of
|
---|
992 | // precision that uniquely distinguishes this value from its neighbors. If we run
|
---|
993 | // out of space in the output buffer, we terminate early.
|
---|
994 | for (;;)
|
---|
995 | {
|
---|
996 | digitExponent = digitExponent-1;
|
---|
997 |
|
---|
998 | // divide out the scale to extract the digit
|
---|
999 | outputDigit = BigInt_DivideWithRemainder_MaxQuotient9(&scaledValue, scale);
|
---|
1000 | RJ_ASSERT( outputDigit < 10 );
|
---|
1001 |
|
---|
1002 | // update the high end of the value
|
---|
1003 | tBigInt scaledValueHigh;
|
---|
1004 | BigInt_Add( &scaledValueHigh, scaledValue, *pScaledMarginHigh );
|
---|
1005 |
|
---|
1006 | // stop looping if we are far enough away from our neighboring values
|
---|
1007 | // or if we have reached the cutoff digit
|
---|
1008 | low = BigInt_Compare(scaledValue, scaledMarginLow) < 0;
|
---|
1009 | high = BigInt_Compare(scaledValueHigh, scale) > 0;
|
---|
1010 | if (low | high | (digitExponent == cutoffExponent))
|
---|
1011 | break;
|
---|
1012 |
|
---|
1013 | // store the output digit
|
---|
1014 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
1015 | ++pCurDigit;
|
---|
1016 |
|
---|
1017 | // multiply larger by the output base
|
---|
1018 | BigInt_Multiply10( &scaledValue );
|
---|
1019 | BigInt_Multiply10( &scaledMarginLow );
|
---|
1020 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
1021 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
1022 | }
|
---|
1023 | }
|
---|
1024 | else
|
---|
1025 | {
|
---|
1026 | // For length based cutoff modes, we will try to print until we
|
---|
1027 | // have exhausted all precision (i.e. all remaining digits are zeros) or
|
---|
1028 | // until we reach the desired cutoff digit.
|
---|
1029 | low = false;
|
---|
1030 | high = false;
|
---|
1031 |
|
---|
1032 | for (;;)
|
---|
1033 | {
|
---|
1034 | digitExponent = digitExponent-1;
|
---|
1035 |
|
---|
1036 | // divide out the scale to extract the digit
|
---|
1037 | outputDigit = BigInt_DivideWithRemainder_MaxQuotient9(&scaledValue, scale);
|
---|
1038 | RJ_ASSERT( outputDigit < 10 );
|
---|
1039 |
|
---|
1040 | if ( scaledValue.IsZero() | (digitExponent == cutoffExponent) )
|
---|
1041 | break;
|
---|
1042 |
|
---|
1043 | // store the output digit
|
---|
1044 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
1045 | ++pCurDigit;
|
---|
1046 |
|
---|
1047 | // multiply larger by the output base
|
---|
1048 | BigInt_Multiply10(&scaledValue);
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | // round off the final digit
|
---|
1053 | // default to rounding down if value got too close to 0
|
---|
1054 | tB roundDown = low;
|
---|
1055 |
|
---|
1056 | // if it is legal to round up and down
|
---|
1057 | if (low == high)
|
---|
1058 | {
|
---|
1059 | // round to the closest digit by comparing value with 0.5. To do this we need to convert
|
---|
1060 | // the inequality to large integer values.
|
---|
1061 | // compare( value, 0.5 )
|
---|
1062 | // compare( scale * value, scale * 0.5 )
|
---|
1063 | // compare( 2 * scale * value, scale )
|
---|
1064 | BigInt_Multiply2(&scaledValue);
|
---|
1065 | tS32 compare = BigInt_Compare(scaledValue, scale);
|
---|
1066 | roundDown = compare < 0;
|
---|
1067 |
|
---|
1068 | // if we are directly in the middle, round towards the even digit (i.e. IEEE rouding rules)
|
---|
1069 | if (compare == 0)
|
---|
1070 | roundDown = (outputDigit & 1) == 0;
|
---|
1071 | }
|
---|
1072 |
|
---|
1073 | // print the rounded digit
|
---|
1074 | if (roundDown)
|
---|
1075 | {
|
---|
1076 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
1077 | ++pCurDigit;
|
---|
1078 | }
|
---|
1079 | else
|
---|
1080 | {
|
---|
1081 | // handle rounding up
|
---|
1082 | if (outputDigit == 9)
|
---|
1083 | {
|
---|
1084 | // find the first non-nine prior digit
|
---|
1085 | for (;;)
|
---|
1086 | {
|
---|
1087 | // if we are at the first digit
|
---|
1088 | if (pCurDigit == pOutBuffer)
|
---|
1089 | {
|
---|
1090 | // output 1 at the next highest exponent
|
---|
1091 | *pCurDigit = '1';
|
---|
1092 | ++pCurDigit;
|
---|
1093 | *pOutExponent += 1;
|
---|
1094 | break;
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 | --pCurDigit;
|
---|
1098 | if (*pCurDigit != '9')
|
---|
1099 | {
|
---|
1100 | // increment the digit
|
---|
1101 | *pCurDigit += 1;
|
---|
1102 | ++pCurDigit;
|
---|
1103 | break;
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 | else
|
---|
1108 | {
|
---|
1109 | // values in the range [0,8] can perform a simple round up
|
---|
1110 | *pCurDigit = (tC8)('0' + outputDigit + 1);
|
---|
1111 | ++pCurDigit;
|
---|
1112 | }
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | // return the number of digits output
|
---|
1116 | tU32 outputLen = (tU32)(pCurDigit - pOutBuffer);
|
---|
1117 | RJ_ASSERT(outputLen <= bufferSize);
|
---|
1118 | return outputLen;
|
---|
1119 | }
|
---|