[823] | 1 | /******************************************************************************
|
---|
| 2 | Copyright (c) 2014 Ryan Juckett
|
---|
| 3 | http://www.ryanjuckett.com/
|
---|
| 4 |
|
---|
| 5 | This software is provided 'as-is', without any express or implied
|
---|
| 6 | warranty. In no event will the authors be held liable for any damages
|
---|
| 7 | arising from the use of this software.
|
---|
| 8 |
|
---|
| 9 | Permission is granted to anyone to use this software for any purpose,
|
---|
| 10 | including commercial applications, and to alter it and redistribute it
|
---|
| 11 | freely, subject to the following restrictions:
|
---|
| 12 |
|
---|
| 13 | 1. The origin of this software must not be misrepresented; you must not
|
---|
| 14 | claim that you wrote the original software. If you use this software
|
---|
| 15 | in a product, an acknowledgment in the product documentation would be
|
---|
| 16 | appreciated but is not required.
|
---|
| 17 |
|
---|
| 18 | 2. Altered source versions must be plainly marked as such, and must not be
|
---|
| 19 | misrepresented as being the original software.
|
---|
| 20 |
|
---|
| 21 | 3. This notice may not be removed or altered from any source
|
---|
| 22 | distribution.
|
---|
| 23 | ******************************************************************************/
|
---|
| 24 |
|
---|
| 25 | #include "Dragon4.h"
|
---|
[834] | 26 | #include "MathDragon4.h"
|
---|
[823] | 27 | #include <math.h>
|
---|
| 28 |
|
---|
| 29 | //******************************************************************************
|
---|
| 30 | // Maximum number of 32 bit blocks needed in high precision arithmetic
|
---|
| 31 | // to print out 64 bit IEEE floating point values.
|
---|
| 32 | //******************************************************************************
|
---|
| 33 | const tU32 c_BigInt_MaxBlocks = 35;
|
---|
| 34 |
|
---|
| 35 | //******************************************************************************
|
---|
| 36 | // This structure stores a high precision unsigned integer. It uses a buffer
|
---|
| 37 | // of 32 bit integer blocks along with a length. The lowest bits of the integer
|
---|
| 38 | // are stored at the start of the buffer and the length is set to the minimum
|
---|
| 39 | // value that contains the integer. Thus, there are never any zero blocks at the
|
---|
| 40 | // end of the buffer.
|
---|
| 41 | //******************************************************************************
|
---|
| 42 | struct tBigInt
|
---|
| 43 | {
|
---|
| 44 | // Copy integer
|
---|
| 45 | tBigInt & operator=(const tBigInt &rhs)
|
---|
| 46 | {
|
---|
| 47 | tU32 length = rhs.m_length;
|
---|
| 48 | tU32 * pLhsCur = m_blocks;
|
---|
| 49 | for (const tU32 *pRhsCur = rhs.m_blocks, *pRhsEnd = pRhsCur + length;
|
---|
| 50 | pRhsCur != pRhsEnd;
|
---|
| 51 | ++pLhsCur, ++pRhsCur)
|
---|
| 52 | {
|
---|
| 53 | *pLhsCur = *pRhsCur;
|
---|
| 54 | }
|
---|
| 55 | m_length = length;
|
---|
| 56 | return *this;
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | // Data accessors
|
---|
| 60 | tU32 GetLength() const { return m_length; }
|
---|
| 61 | tU32 GetBlock(tU32 idx) const { return m_blocks[idx]; }
|
---|
| 62 |
|
---|
| 63 | // Zero helper functions
|
---|
| 64 | void SetZero() { m_length = 0; }
|
---|
| 65 | tB IsZero() const { return m_length == 0; }
|
---|
| 66 |
|
---|
| 67 | // Basic type accessors
|
---|
| 68 | void SetU64(tU64 val)
|
---|
| 69 | {
|
---|
| 70 | if (val > 0xFFFFFFFF)
|
---|
| 71 | {
|
---|
| 72 | m_blocks[0] = val & 0xFFFFFFFF;
|
---|
| 73 | m_blocks[1] = (val >> 32) & 0xFFFFFFFF;
|
---|
| 74 | m_length = 2;
|
---|
| 75 | }
|
---|
| 76 | else if (val != 0)
|
---|
| 77 | {
|
---|
| 78 | m_blocks[0] = val & 0xFFFFFFFF;
|
---|
| 79 | m_length = 1;
|
---|
| 80 | }
|
---|
| 81 | else
|
---|
| 82 | {
|
---|
| 83 | m_length = 0;
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | void SetU32(tU32 val)
|
---|
| 88 | {
|
---|
| 89 | if (val != 0)
|
---|
| 90 | {
|
---|
| 91 | m_blocks[0] = val;
|
---|
| 92 | m_length = (val != 0);
|
---|
| 93 | }
|
---|
| 94 | else
|
---|
| 95 | {
|
---|
| 96 | m_length = 0;
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | tU32 GetU32() const { return (m_length == 0) ? 0 : m_blocks[0]; }
|
---|
| 101 |
|
---|
| 102 | // Member data
|
---|
| 103 | tU32 m_length;
|
---|
| 104 | tU32 m_blocks[c_BigInt_MaxBlocks];
|
---|
| 105 | };
|
---|
| 106 |
|
---|
| 107 | //******************************************************************************
|
---|
| 108 | // Returns 0 if (lhs = rhs), negative if (lhs < rhs), positive if (lhs > rhs)
|
---|
| 109 | //******************************************************************************
|
---|
| 110 | static tS32 BigInt_Compare(const tBigInt & lhs, const tBigInt & rhs)
|
---|
| 111 | {
|
---|
| 112 | // A bigger length implies a bigger number.
|
---|
| 113 | tS32 lengthDiff = lhs.m_length - rhs.m_length;
|
---|
| 114 | if (lengthDiff != 0)
|
---|
| 115 | return lengthDiff;
|
---|
| 116 |
|
---|
| 117 | // Compare blocks one by one from high to low.
|
---|
| 118 | for (tS32 i = lhs.m_length - 1; i >= 0; --i)
|
---|
| 119 | {
|
---|
| 120 | if (lhs.m_blocks[i] == rhs.m_blocks[i])
|
---|
| 121 | continue;
|
---|
| 122 | else if (lhs.m_blocks[i] > rhs.m_blocks[i])
|
---|
| 123 | return 1;
|
---|
| 124 | else
|
---|
| 125 | return -1;
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | // no blocks differed
|
---|
| 129 | return 0;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | //******************************************************************************
|
---|
| 133 | // result = lhs + rhs
|
---|
| 134 | //******************************************************************************
|
---|
| 135 | static void BigInt_Add(tBigInt * pResult, const tBigInt & lhs, const tBigInt & rhs)
|
---|
| 136 | {
|
---|
| 137 | // determine which operand has the smaller length
|
---|
| 138 | const tBigInt * pLarge;
|
---|
| 139 | const tBigInt * pSmall;
|
---|
| 140 | if (lhs.m_length < rhs.m_length)
|
---|
| 141 | {
|
---|
| 142 | pSmall = &lhs;
|
---|
| 143 | pLarge = &rhs;
|
---|
| 144 | }
|
---|
| 145 | else
|
---|
| 146 | {
|
---|
| 147 | pSmall = &rhs;
|
---|
| 148 | pLarge = &lhs;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | const tU32 largeLen = pLarge->m_length;
|
---|
| 152 | const tU32 smallLen = pSmall->m_length;
|
---|
| 153 |
|
---|
| 154 | // The output will be at least as long as the largest input
|
---|
| 155 | pResult->m_length = largeLen;
|
---|
| 156 |
|
---|
| 157 | // Add each block and add carry the overflow to the next block
|
---|
| 158 | tU64 carry = 0;
|
---|
| 159 | const tU32 * pLargeCur = pLarge->m_blocks;
|
---|
| 160 | const tU32 * pLargeEnd = pLargeCur + largeLen;
|
---|
| 161 | const tU32 * pSmallCur = pSmall->m_blocks;
|
---|
| 162 | const tU32 * pSmallEnd = pSmallCur + smallLen;
|
---|
| 163 | tU32 * pResultCur = pResult->m_blocks;
|
---|
| 164 | while (pSmallCur != pSmallEnd)
|
---|
| 165 | {
|
---|
| 166 | tU64 sum = carry + (tU64)(*pLargeCur) + (tU64)(*pSmallCur);
|
---|
| 167 | carry = sum >> 32;
|
---|
| 168 | (*pResultCur) = sum & 0xFFFFFFFF;
|
---|
| 169 | ++pLargeCur;
|
---|
| 170 | ++pSmallCur;
|
---|
| 171 | ++pResultCur;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | // Add the carry to any blocks that only exist in the large operand
|
---|
| 175 | while (pLargeCur != pLargeEnd)
|
---|
| 176 | {
|
---|
| 177 | tU64 sum = carry + (tU64)(*pLargeCur);
|
---|
| 178 | carry = sum >> 32;
|
---|
| 179 | (*pResultCur) = sum & 0xFFFFFFFF;
|
---|
| 180 | ++pLargeCur;
|
---|
| 181 | ++pResultCur;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | // If there's still a carry, append a new block
|
---|
| 185 | if (carry != 0)
|
---|
| 186 | {
|
---|
| 187 | RJ_ASSERT(carry == 1);
|
---|
| 188 | RJ_ASSERT((tU32)(pResultCur - pResult->m_blocks) == largeLen && (largeLen < c_BigInt_MaxBlocks));
|
---|
| 189 | *pResultCur = 1;
|
---|
| 190 | pResult->m_length = largeLen + 1;
|
---|
| 191 | }
|
---|
| 192 | else
|
---|
| 193 | {
|
---|
| 194 | pResult->m_length = largeLen;
|
---|
| 195 | }
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | //******************************************************************************
|
---|
| 199 | // result = lhs * rhs
|
---|
| 200 | //******************************************************************************
|
---|
| 201 | static void BigInt_Multiply(tBigInt * pResult, const tBigInt &lhs, const tBigInt &rhs)
|
---|
| 202 | {
|
---|
| 203 | RJ_ASSERT( pResult != &lhs && pResult != &rhs );
|
---|
| 204 |
|
---|
| 205 | // determine which operand has the smaller length
|
---|
| 206 | const tBigInt * pLarge;
|
---|
| 207 | const tBigInt * pSmall;
|
---|
| 208 | if (lhs.m_length < rhs.m_length)
|
---|
| 209 | {
|
---|
| 210 | pSmall = &lhs;
|
---|
| 211 | pLarge = &rhs;
|
---|
| 212 | }
|
---|
| 213 | else
|
---|
| 214 | {
|
---|
| 215 | pSmall = &rhs;
|
---|
| 216 | pLarge = &lhs;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | // set the maximum possible result length
|
---|
| 220 | tU32 maxResultLen = pLarge->m_length + pSmall->m_length;
|
---|
| 221 | RJ_ASSERT( maxResultLen <= c_BigInt_MaxBlocks );
|
---|
| 222 |
|
---|
| 223 | // clear the result data
|
---|
| 224 | for(tU32 * pCur = pResult->m_blocks, *pEnd = pCur + maxResultLen; pCur != pEnd; ++pCur)
|
---|
| 225 | *pCur = 0;
|
---|
| 226 |
|
---|
| 227 | // perform standard long multiplication
|
---|
| 228 | const tU32 *pLargeBeg = pLarge->m_blocks;
|
---|
| 229 | const tU32 *pLargeEnd = pLargeBeg + pLarge->m_length;
|
---|
| 230 |
|
---|
| 231 | // for each small block
|
---|
| 232 | tU32 *pResultStart = pResult->m_blocks;
|
---|
| 233 | for(const tU32 *pSmallCur = pSmall->m_blocks, *pSmallEnd = pSmallCur + pSmall->m_length;
|
---|
| 234 | pSmallCur != pSmallEnd;
|
---|
| 235 | ++pSmallCur, ++pResultStart)
|
---|
| 236 | {
|
---|
| 237 | // if non-zero, multiply against all the large blocks and add into the result
|
---|
| 238 | const tU32 multiplier = *pSmallCur;
|
---|
| 239 | if (multiplier != 0)
|
---|
| 240 | {
|
---|
| 241 | const tU32 *pLargeCur = pLargeBeg;
|
---|
| 242 | tU32 *pResultCur = pResultStart;
|
---|
| 243 | tU64 carry = 0;
|
---|
| 244 | do
|
---|
| 245 | {
|
---|
| 246 | tU64 product = (*pResultCur) + (*pLargeCur)*(tU64)multiplier + carry;
|
---|
| 247 | carry = product >> 32;
|
---|
| 248 | *pResultCur = product & 0xFFFFFFFF;
|
---|
| 249 | ++pLargeCur;
|
---|
| 250 | ++pResultCur;
|
---|
| 251 | } while(pLargeCur != pLargeEnd);
|
---|
| 252 |
|
---|
| 253 | RJ_ASSERT(pResultCur < pResult->m_blocks + maxResultLen);
|
---|
| 254 | *pResultCur = (tU32)(carry & 0xFFFFFFFF);
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | // check if the terminating block has no set bits
|
---|
| 259 | if (maxResultLen > 0 && pResult->m_blocks[maxResultLen - 1] == 0)
|
---|
| 260 | pResult->m_length = maxResultLen-1;
|
---|
| 261 | else
|
---|
| 262 | pResult->m_length = maxResultLen;
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | //******************************************************************************
|
---|
| 266 | // result = lhs * rhs
|
---|
| 267 | //******************************************************************************
|
---|
| 268 | static void BigInt_Multiply(tBigInt * pResult, const tBigInt & lhs, tU32 rhs)
|
---|
| 269 | {
|
---|
| 270 | // perform long multiplication
|
---|
| 271 | tU32 carry = 0;
|
---|
| 272 | tU32 *pResultCur = pResult->m_blocks;
|
---|
| 273 | const tU32 *pLhsCur = lhs.m_blocks;
|
---|
| 274 | const tU32 *pLhsEnd = lhs.m_blocks + lhs.m_length;
|
---|
| 275 | for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++pResultCur )
|
---|
| 276 | {
|
---|
| 277 | tU64 product = (tU64)(*pLhsCur) * rhs + carry;
|
---|
| 278 | *pResultCur = (tU32)(product & 0xFFFFFFFF);
|
---|
| 279 | carry = product >> 32;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 | // if there is a remaining carry, grow the array
|
---|
| 283 | if (carry != 0)
|
---|
| 284 | {
|
---|
| 285 | // grow the array
|
---|
| 286 | RJ_ASSERT(lhs.m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
| 287 | *pResultCur = (tU32)carry;
|
---|
| 288 | pResult->m_length = lhs.m_length + 1;
|
---|
| 289 | }
|
---|
| 290 | else
|
---|
| 291 | {
|
---|
| 292 | pResult->m_length = lhs.m_length;
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | //******************************************************************************
|
---|
| 297 | // result = in * 2
|
---|
| 298 | //******************************************************************************
|
---|
| 299 | static void BigInt_Multiply2(tBigInt * pResult, const tBigInt &in)
|
---|
| 300 | {
|
---|
| 301 | // shift all the blocks by one
|
---|
| 302 | tU32 carry = 0;
|
---|
| 303 |
|
---|
| 304 | tU32 *pResultCur = pResult->m_blocks;
|
---|
| 305 | const tU32 *pLhsCur = in.m_blocks;
|
---|
| 306 | const tU32 *pLhsEnd = in.m_blocks + in.m_length;
|
---|
| 307 | for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++pResultCur )
|
---|
| 308 | {
|
---|
| 309 | tU32 cur = *pLhsCur;
|
---|
| 310 | *pResultCur = (cur << 1) | carry;
|
---|
| 311 | carry = cur >> 31;
|
---|
| 312 | }
|
---|
| 313 |
|
---|
| 314 | if (carry != 0)
|
---|
| 315 | {
|
---|
| 316 | // grow the array
|
---|
| 317 | RJ_ASSERT(in.m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
| 318 | *pResultCur = carry;
|
---|
| 319 | pResult->m_length = in.m_length + 1;
|
---|
| 320 | }
|
---|
| 321 | else
|
---|
| 322 | {
|
---|
| 323 | pResult->m_length = in.m_length;
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 | //******************************************************************************
|
---|
| 328 | // result = result * 2
|
---|
| 329 | //******************************************************************************
|
---|
| 330 | static void BigInt_Multiply2(tBigInt * pResult)
|
---|
| 331 | {
|
---|
| 332 | // shift all the blocks by one
|
---|
| 333 | tU32 carry = 0;
|
---|
| 334 |
|
---|
| 335 | tU32 *pCur = pResult->m_blocks;
|
---|
| 336 | tU32 *pEnd = pResult->m_blocks + pResult->m_length;
|
---|
| 337 | for ( ; pCur != pEnd; ++pCur )
|
---|
| 338 | {
|
---|
| 339 | tU32 cur = *pCur;
|
---|
| 340 | *pCur = (cur << 1) | carry;
|
---|
| 341 | carry = cur >> 31;
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | if (carry != 0)
|
---|
| 345 | {
|
---|
| 346 | // grow the array
|
---|
| 347 | RJ_ASSERT(pResult->m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
| 348 | *pCur = carry;
|
---|
| 349 | ++pResult->m_length;
|
---|
| 350 | }
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | //******************************************************************************
|
---|
| 354 | // result = result * 10
|
---|
| 355 | //******************************************************************************
|
---|
| 356 | static void BigInt_Multiply10(tBigInt * pResult)
|
---|
| 357 | {
|
---|
| 358 | // multiply all the blocks
|
---|
| 359 | tU64 carry = 0;
|
---|
| 360 |
|
---|
| 361 | tU32 *pCur = pResult->m_blocks;
|
---|
| 362 | tU32 *pEnd = pResult->m_blocks + pResult->m_length;
|
---|
| 363 | for ( ; pCur != pEnd; ++pCur )
|
---|
| 364 | {
|
---|
| 365 | tU64 product = (tU64)(*pCur) * 10ull + carry;
|
---|
| 366 | (*pCur) = (tU32)(product & 0xFFFFFFFF);
|
---|
| 367 | carry = product >> 32;
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | if (carry != 0)
|
---|
| 371 | {
|
---|
| 372 | // grow the array
|
---|
| 373 | RJ_ASSERT(pResult->m_length + 1 <= c_BigInt_MaxBlocks);
|
---|
| 374 | *pCur = (tU32)carry;
|
---|
| 375 | ++pResult->m_length;
|
---|
| 376 | }
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | //******************************************************************************
|
---|
| 380 | //******************************************************************************
|
---|
| 381 | static tU32 g_PowerOf10_U32[] =
|
---|
| 382 | {
|
---|
| 383 | 1, // 10 ^ 0
|
---|
| 384 | 10, // 10 ^ 1
|
---|
| 385 | 100, // 10 ^ 2
|
---|
| 386 | 1000, // 10 ^ 3
|
---|
| 387 | 10000, // 10 ^ 4
|
---|
| 388 | 100000, // 10 ^ 5
|
---|
| 389 | 1000000, // 10 ^ 6
|
---|
| 390 | 10000000, // 10 ^ 7
|
---|
| 391 | };
|
---|
| 392 |
|
---|
| 393 | //******************************************************************************
|
---|
| 394 | // Note: This has a lot of wasted space in the big integer structures of the
|
---|
| 395 | // early table entries. It wouldn't be terribly hard to make the multiply
|
---|
| 396 | // function work on integer pointers with an array length instead of
|
---|
| 397 | // the tBigInt struct which would allow us to store a minimal amount of
|
---|
| 398 | // data here.
|
---|
| 399 | //******************************************************************************
|
---|
| 400 | static tBigInt g_PowerOf10_Big[] =
|
---|
| 401 | {
|
---|
| 402 | // 10 ^ 8
|
---|
| 403 | { 1, { 100000000 } },
|
---|
| 404 | // 10 ^ 16
|
---|
| 405 | { 2, { 0x6fc10000, 0x002386f2 } },
|
---|
| 406 | // 10 ^ 32
|
---|
| 407 | { 4, { 0x00000000, 0x85acef81, 0x2d6d415b, 0x000004ee, } },
|
---|
| 408 | // 10 ^ 64
|
---|
| 409 | { 7, { 0x00000000, 0x00000000, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x00184f03, } },
|
---|
| 410 | // 10 ^ 128
|
---|
| 411 | { 14, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x2e953e01, 0x03df9909, 0x0f1538fd,
|
---|
| 412 | 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, 0xe91f2603, 0x0000024e, } },
|
---|
| 413 | // 10 ^ 256
|
---|
| 414 | { 27, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
---|
| 415 | 0x00000000, 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70,
|
---|
| 416 | 0xd595d80f, 0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0,
|
---|
| 417 | 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, 0xf46eeddc, 0x5fdcefce, 0x000553f7, } }
|
---|
| 418 | };
|
---|
| 419 |
|
---|
| 420 | //******************************************************************************
|
---|
| 421 | // result = 10^exponent
|
---|
| 422 | //******************************************************************************
|
---|
| 423 | static void BigInt_Pow10(tBigInt * pResult, tU32 exponent)
|
---|
| 424 | {
|
---|
| 425 | // make sure the exponent is within the bounds of the lookup table data
|
---|
| 426 | RJ_ASSERT(exponent < 512);
|
---|
| 427 |
|
---|
| 428 | // create two temporary values to reduce large integer copy operations
|
---|
| 429 | tBigInt temp1;
|
---|
| 430 | tBigInt temp2;
|
---|
| 431 | tBigInt *pCurTemp = &temp1;
|
---|
| 432 | tBigInt *pNextTemp = &temp2;
|
---|
| 433 |
|
---|
| 434 | // initialize the result by looking up a 32-bit power of 10 corresponding to the first 3 bits
|
---|
| 435 | tU32 smallExponent = exponent & 0x7;
|
---|
| 436 | pCurTemp->SetU32(g_PowerOf10_U32[smallExponent]);
|
---|
| 437 |
|
---|
| 438 | // remove the low bits that we used for the 32-bit lookup table
|
---|
| 439 | exponent >>= 3;
|
---|
| 440 | tU32 tableIdx = 0;
|
---|
| 441 |
|
---|
| 442 | // while there are remaining bits in the exponent to be processed
|
---|
| 443 | while (exponent != 0)
|
---|
| 444 | {
|
---|
| 445 | // if the current bit is set, multiply it with the corresponding power of 10
|
---|
| 446 | if(exponent & 1)
|
---|
| 447 | {
|
---|
| 448 | // multiply into the next temporary
|
---|
| 449 | BigInt_Multiply( pNextTemp, *pCurTemp, g_PowerOf10_Big[tableIdx] );
|
---|
| 450 |
|
---|
| 451 | // swap to the next temporary
|
---|
| 452 | tBigInt * pSwap = pCurTemp;
|
---|
| 453 | pCurTemp = pNextTemp;
|
---|
| 454 | pNextTemp = pSwap;
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | // advance to the next bit
|
---|
| 458 | ++tableIdx;
|
---|
| 459 | exponent >>= 1;
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 | // output the result
|
---|
| 463 | *pResult = *pCurTemp;
|
---|
| 464 | }
|
---|
| 465 |
|
---|
| 466 | //******************************************************************************
|
---|
| 467 | // result = in * 10^exponent
|
---|
| 468 | //******************************************************************************
|
---|
| 469 | static void BigInt_MultiplyPow10(tBigInt * pResult, const tBigInt & in, tU32 exponent)
|
---|
| 470 | {
|
---|
| 471 | // make sure the exponent is within the bounds of the lookup table data
|
---|
| 472 | RJ_ASSERT(exponent < 512);
|
---|
| 473 |
|
---|
| 474 | // create two temporary values to reduce large integer copy operations
|
---|
| 475 | tBigInt temp1;
|
---|
| 476 | tBigInt temp2;
|
---|
| 477 | tBigInt *pCurTemp = &temp1;
|
---|
| 478 | tBigInt *pNextTemp = &temp2;
|
---|
| 479 |
|
---|
| 480 | // initialize the result by looking up a 32-bit power of 10 corresponding to the first 3 bits
|
---|
| 481 | tU32 smallExponent = exponent & 0x7;
|
---|
| 482 | if (smallExponent != 0)
|
---|
| 483 | {
|
---|
| 484 | BigInt_Multiply( pCurTemp, in, g_PowerOf10_U32[smallExponent] );
|
---|
| 485 | }
|
---|
| 486 | else
|
---|
| 487 | {
|
---|
| 488 | *pCurTemp = in;
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | // remove the low bits that we used for the 32-bit lookup table
|
---|
| 492 | exponent >>= 3;
|
---|
| 493 | tU32 tableIdx = 0;
|
---|
| 494 |
|
---|
| 495 | // while there are remaining bits in the exponent to be processed
|
---|
| 496 | while (exponent != 0)
|
---|
| 497 | {
|
---|
| 498 | // if the current bit is set, multiply it with the corresponding power of 10
|
---|
| 499 | if(exponent & 1)
|
---|
| 500 | {
|
---|
| 501 | // multiply into the next temporary
|
---|
| 502 | BigInt_Multiply( pNextTemp, *pCurTemp, g_PowerOf10_Big[tableIdx] );
|
---|
| 503 |
|
---|
| 504 | // swap to the next temporary
|
---|
| 505 | tBigInt * pSwap = pCurTemp;
|
---|
| 506 | pCurTemp = pNextTemp;
|
---|
| 507 | pNextTemp = pSwap;
|
---|
| 508 | }
|
---|
| 509 |
|
---|
| 510 | // advance to the next bit
|
---|
| 511 | ++tableIdx;
|
---|
| 512 | exponent >>= 1;
|
---|
| 513 | }
|
---|
| 514 |
|
---|
| 515 | // output the result
|
---|
| 516 | *pResult = *pCurTemp;
|
---|
| 517 | }
|
---|
| 518 |
|
---|
| 519 | //******************************************************************************
|
---|
| 520 | // result = 2^exponent
|
---|
| 521 | //******************************************************************************
|
---|
| 522 | static inline void BigInt_Pow2(tBigInt * pResult, tU32 exponent)
|
---|
| 523 | {
|
---|
| 524 | tU32 blockIdx = exponent / 32;
|
---|
| 525 | RJ_ASSERT( blockIdx < c_BigInt_MaxBlocks );
|
---|
| 526 |
|
---|
| 527 | for ( tU32 i = 0; i <= blockIdx; ++i)
|
---|
| 528 | pResult->m_blocks[i] = 0;
|
---|
| 529 |
|
---|
| 530 | pResult->m_length = blockIdx + 1;
|
---|
| 531 |
|
---|
| 532 | tU32 bitIdx = (exponent % 32);
|
---|
| 533 | pResult->m_blocks[blockIdx] |= (1 << bitIdx);
|
---|
| 534 | }
|
---|
| 535 |
|
---|
| 536 | //******************************************************************************
|
---|
| 537 | // This function will divide two large numbers under the assumption that the
|
---|
| 538 | // result is within the range [0,10) and the input numbers have been shifted
|
---|
| 539 | // to satisfy:
|
---|
| 540 | // - The highest block of the divisor is greater than or equal to 8 such that
|
---|
| 541 | // there is enough precision to make an accurate first guess at the quotient.
|
---|
| 542 | // - The highest block of the divisor is less than the maximum value on an
|
---|
| 543 | // unsigned 32-bit integer such that we can safely increment without overflow.
|
---|
| 544 | // - The dividend does not contain more blocks than the divisor such that we
|
---|
| 545 | // can estimate the quotient by dividing the equivalently placed high blocks.
|
---|
| 546 | //
|
---|
| 547 | // quotient = floor(dividend / divisor)
|
---|
| 548 | // remainder = dividend - quotient*divisor
|
---|
| 549 | //
|
---|
| 550 | // pDividend is updated to be the remainder and the quotient is returned.
|
---|
| 551 | //******************************************************************************
|
---|
| 552 | static tU32 BigInt_DivideWithRemainder_MaxQuotient9(tBigInt * pDividend, const tBigInt & divisor)
|
---|
| 553 | {
|
---|
| 554 | // Check that the divisor has been correctly shifted into range and that it is not
|
---|
| 555 | // smaller than the dividend in length.
|
---|
| 556 | RJ_ASSERT( !divisor.IsZero() &&
|
---|
| 557 | divisor.m_blocks[divisor.m_length-1] >= 8 &&
|
---|
| 558 | divisor.m_blocks[divisor.m_length-1] < 0xFFFFFFFF &&
|
---|
| 559 | pDividend->m_length <= divisor.m_length );
|
---|
| 560 |
|
---|
| 561 | // If the dividend is smaller than the divisor, the quotient is zero and the divisor is already
|
---|
| 562 | // the remainder.
|
---|
| 563 | tU32 length = divisor.m_length;
|
---|
| 564 | if (pDividend->m_length < divisor.m_length)
|
---|
| 565 | return 0;
|
---|
| 566 |
|
---|
| 567 | const tU32 * pFinalDivisorBlock = divisor.m_blocks + length - 1;
|
---|
| 568 | tU32 * pFinalDividendBlock = pDividend->m_blocks + length - 1;
|
---|
| 569 |
|
---|
| 570 | // Compute an estimated quotient based on the high block value. This will either match the actual quotient or
|
---|
| 571 | // undershoot by one.
|
---|
| 572 | tU32 quotient = *pFinalDividendBlock / (*pFinalDivisorBlock + 1);
|
---|
| 573 | RJ_ASSERT(quotient <= 9);
|
---|
| 574 |
|
---|
| 575 | // Divide out the estimated quotient
|
---|
| 576 | if (quotient != 0)
|
---|
| 577 | {
|
---|
| 578 | // dividend = dividend - divisor*quotient
|
---|
| 579 | const tU32 *pDivisorCur = divisor.m_blocks;
|
---|
| 580 | tU32 *pDividendCur = pDividend->m_blocks;
|
---|
| 581 |
|
---|
| 582 | tU64 borrow = 0;
|
---|
| 583 | tU64 carry = 0;
|
---|
| 584 | do
|
---|
| 585 | {
|
---|
| 586 | tU64 product = (tU64)*pDivisorCur * (tU64)quotient + carry;
|
---|
| 587 | carry = product >> 32;
|
---|
| 588 |
|
---|
| 589 | tU64 difference = (tU64)*pDividendCur - (product & 0xFFFFFFFF) - borrow;
|
---|
| 590 | borrow = (difference >> 32) & 1;
|
---|
| 591 |
|
---|
| 592 | *pDividendCur = difference & 0xFFFFFFFF;
|
---|
| 593 |
|
---|
| 594 | ++pDivisorCur;
|
---|
| 595 | ++pDividendCur;
|
---|
| 596 | } while(pDivisorCur <= pFinalDivisorBlock);
|
---|
| 597 |
|
---|
| 598 | // remove all leading zero blocks from dividend
|
---|
| 599 | while (length > 0 && pDividend->m_blocks[length - 1] == 0)
|
---|
| 600 | --length;
|
---|
| 601 |
|
---|
| 602 | pDividend->m_length = length;
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | // If the dividend is still larger than the divisor, we overshot our estimate quotient. To correct,
|
---|
| 606 | // we increment the quotient and subtract one more divisor from the dividend.
|
---|
| 607 | if ( BigInt_Compare(*pDividend, divisor) >= 0 )
|
---|
| 608 | {
|
---|
| 609 | ++quotient;
|
---|
| 610 |
|
---|
| 611 | // dividend = dividend - divisor
|
---|
| 612 | const tU32 *pDivisorCur = divisor.m_blocks;
|
---|
| 613 | tU32 *pDividendCur = pDividend->m_blocks;
|
---|
| 614 |
|
---|
| 615 | tU64 borrow = 0;
|
---|
| 616 | do
|
---|
| 617 | {
|
---|
| 618 | tU64 difference = (tU64)*pDividendCur - (tU64)*pDivisorCur - borrow;
|
---|
| 619 | borrow = (difference >> 32) & 1;
|
---|
| 620 |
|
---|
| 621 | *pDividendCur = difference & 0xFFFFFFFF;
|
---|
| 622 |
|
---|
| 623 | ++pDivisorCur;
|
---|
| 624 | ++pDividendCur;
|
---|
| 625 | } while(pDivisorCur <= pFinalDivisorBlock);
|
---|
| 626 |
|
---|
| 627 | // remove all leading zero blocks from dividend
|
---|
| 628 | while (length > 0 && pDividend->m_blocks[length - 1] == 0)
|
---|
| 629 | --length;
|
---|
| 630 |
|
---|
| 631 | pDividend->m_length = length;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | return quotient;
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | //******************************************************************************
|
---|
| 638 | // result = result << shift
|
---|
| 639 | //******************************************************************************
|
---|
| 640 | static void BigInt_ShiftLeft(tBigInt * pResult, tU32 shift)
|
---|
| 641 | {
|
---|
| 642 | RJ_ASSERT( shift != 0 );
|
---|
| 643 |
|
---|
| 644 | tU32 shiftBlocks = shift / 32;
|
---|
| 645 | tU32 shiftBits = shift % 32;
|
---|
| 646 |
|
---|
| 647 | // process blocks high to low so that we can safely process in place
|
---|
| 648 | const tU32 * pInBlocks = pResult->m_blocks;
|
---|
| 649 | tS32 inLength = pResult->m_length;
|
---|
| 650 | RJ_ASSERT( inLength + shiftBlocks <= c_BigInt_MaxBlocks );
|
---|
| 651 |
|
---|
| 652 | // check if the shift is block aligned
|
---|
| 653 | if (shiftBits == 0)
|
---|
| 654 | {
|
---|
| 655 | // copy blocks from high to low
|
---|
| 656 | for (tU32 * pInCur = pResult->m_blocks + inLength - 1, *pOutCur = pInCur + shiftBlocks;
|
---|
| 657 | pInCur >= pInBlocks;
|
---|
| 658 | --pInCur, --pOutCur)
|
---|
| 659 | {
|
---|
| 660 | *pOutCur = *pInCur;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | // zero the remaining low blocks
|
---|
| 664 | for ( tU32 i = 0; i < shiftBlocks; ++i)
|
---|
| 665 | pResult->m_blocks[i] = 0;
|
---|
| 666 |
|
---|
| 667 | pResult->m_length += shiftBlocks;
|
---|
| 668 | }
|
---|
| 669 | // else we need to shift partial blocks
|
---|
| 670 | else
|
---|
| 671 | {
|
---|
| 672 | tS32 inBlockIdx = inLength - 1;
|
---|
| 673 | tU32 outBlockIdx = inLength + shiftBlocks;
|
---|
| 674 |
|
---|
| 675 | // set the length to hold the shifted blocks
|
---|
| 676 | RJ_ASSERT( outBlockIdx < c_BigInt_MaxBlocks );
|
---|
| 677 | pResult->m_length = outBlockIdx + 1;
|
---|
| 678 |
|
---|
| 679 | // output the initial blocks
|
---|
| 680 | const tU32 lowBitsShift = (32 - shiftBits);
|
---|
| 681 | tU32 highBits = 0;
|
---|
| 682 | tU32 block = pResult->m_blocks[inBlockIdx];
|
---|
| 683 | tU32 lowBits = block >> lowBitsShift;
|
---|
| 684 | while ( inBlockIdx > 0 )
|
---|
| 685 | {
|
---|
| 686 | pResult->m_blocks[outBlockIdx] = highBits | lowBits;
|
---|
| 687 | highBits = block << shiftBits;
|
---|
| 688 |
|
---|
| 689 | --inBlockIdx;
|
---|
| 690 | --outBlockIdx;
|
---|
| 691 |
|
---|
| 692 | block = pResult->m_blocks[inBlockIdx];
|
---|
| 693 | lowBits = block >> lowBitsShift;
|
---|
| 694 | }
|
---|
| 695 |
|
---|
| 696 | // output the final blocks
|
---|
| 697 | RJ_ASSERT( outBlockIdx == shiftBlocks + 1 );
|
---|
| 698 | pResult->m_blocks[outBlockIdx] = highBits | lowBits;
|
---|
| 699 | pResult->m_blocks[outBlockIdx-1] = block << shiftBits;
|
---|
| 700 |
|
---|
| 701 | // zero the remaining low blocks
|
---|
| 702 | for ( tU32 i = 0; i < shiftBlocks; ++i)
|
---|
| 703 | pResult->m_blocks[i] = 0;
|
---|
| 704 |
|
---|
| 705 | // check if the terminating block has no set bits
|
---|
| 706 | if (pResult->m_blocks[pResult->m_length - 1] == 0)
|
---|
| 707 | --pResult->m_length;
|
---|
| 708 | }
|
---|
| 709 | }
|
---|
| 710 |
|
---|
| 711 | //******************************************************************************
|
---|
| 712 | // This is an implementation the Dragon4 algorithm to convert a binary number
|
---|
| 713 | // in floating point format to a decimal number in string format. The function
|
---|
| 714 | // returns the number of digits written to the output buffer and the output is
|
---|
| 715 | // not NUL terminated.
|
---|
| 716 | //
|
---|
| 717 | // The floating point input value is (mantissa * 2^exponent).
|
---|
| 718 | //
|
---|
| 719 | // See the following papers for more information on the algorithm:
|
---|
| 720 | // "How to Print Floating-Point Numbers Accurately"
|
---|
| 721 | // Steele and White
|
---|
| 722 | // http://kurtstephens.com/files/p372-steele.pdf
|
---|
| 723 | // "Printing Floating-Point Numbers Quickly and Accurately"
|
---|
| 724 | // Burger and Dybvig
|
---|
| 725 | // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656&rep=rep1&type=pdf
|
---|
| 726 | //******************************************************************************
|
---|
| 727 | tU32 Dragon4
|
---|
| 728 | (
|
---|
| 729 | const tU64 mantissa, // value significand
|
---|
| 730 | const tS32 exponent, // value exponent in base 2
|
---|
| 731 | const tU32 mantissaHighBitIdx, // index of the highest set mantissa bit
|
---|
| 732 | const tB hasUnequalMargins, // is the high margin twice as large as the low margin
|
---|
| 733 | const tCutoffMode cutoffMode, // how to determine output length
|
---|
| 734 | tU32 cutoffNumber, // parameter to the selected cutoffMode
|
---|
| 735 | tC8 * pOutBuffer, // buffer to output into
|
---|
| 736 | tU32 bufferSize, // maximum characters that can be printed to pOutBuffer
|
---|
| 737 | tS32 * pOutExponent // the base 10 exponent of the first digit
|
---|
| 738 | )
|
---|
| 739 | {
|
---|
| 740 | tC8 * pCurDigit = pOutBuffer;
|
---|
| 741 |
|
---|
| 742 | RJ_ASSERT( bufferSize > 0 );
|
---|
| 743 |
|
---|
| 744 | // if the mantissa is zero, the value is zero regardless of the exponent
|
---|
| 745 | if (mantissa == 0)
|
---|
| 746 | {
|
---|
| 747 | *pCurDigit = '0';
|
---|
| 748 | *pOutExponent = 0;
|
---|
| 749 | return 1;
|
---|
| 750 | }
|
---|
| 751 |
|
---|
| 752 | // compute the initial state in integral form such that
|
---|
| 753 | // value = scaledValue / scale
|
---|
| 754 | // marginLow = scaledMarginLow / scale
|
---|
| 755 | tBigInt scale; // positive scale applied to value and margin such that they can be
|
---|
| 756 | // represented as whole numbers
|
---|
| 757 | tBigInt scaledValue; // scale * mantissa
|
---|
| 758 | tBigInt scaledMarginLow; // scale * 0.5 * (distance between this floating-point number and its
|
---|
| 759 | // immediate lower value)
|
---|
| 760 |
|
---|
| 761 | // For normalized IEEE floating point values, each time the exponent is incremented the margin also
|
---|
| 762 | // doubles. That creates a subset of transition numbers where the high margin is twice the size of
|
---|
| 763 | // the low margin.
|
---|
| 764 | tBigInt * pScaledMarginHigh;
|
---|
| 765 | tBigInt optionalMarginHigh;
|
---|
| 766 |
|
---|
| 767 | if ( hasUnequalMargins )
|
---|
| 768 | {
|
---|
| 769 | // if we have no fractional component
|
---|
| 770 | if (exponent > 0)
|
---|
| 771 | {
|
---|
| 772 | // 1) Expand the input value by multiplying out the mantissa and exponent. This represents
|
---|
| 773 | // the input value in its whole number representation.
|
---|
| 774 | // 2) Apply an additional scale of 2 such that later comparisons against the margin values
|
---|
| 775 | // are simplified.
|
---|
| 776 | // 3) Set the margin value to the lowest mantissa bit's scale.
|
---|
| 777 |
|
---|
| 778 | // scaledValue = 2 * 2 * mantissa*2^exponent
|
---|
| 779 | scaledValue.SetU64( 4 * mantissa );
|
---|
| 780 | BigInt_ShiftLeft( &scaledValue, exponent );
|
---|
| 781 |
|
---|
| 782 | // scale = 2 * 2 * 1
|
---|
| 783 | scale.SetU32( 4 );
|
---|
| 784 |
|
---|
| 785 | // scaledMarginLow = 2 * 2^(exponent-1)
|
---|
| 786 | BigInt_Pow2( &scaledMarginLow, exponent );
|
---|
| 787 |
|
---|
| 788 | // scaledMarginHigh = 2 * 2 * 2^(exponent-1)
|
---|
| 789 | BigInt_Pow2( &optionalMarginHigh, exponent + 1 );
|
---|
| 790 | }
|
---|
| 791 | // else we have a fractional exponent
|
---|
| 792 | else
|
---|
| 793 | {
|
---|
| 794 | // In order to track the mantissa data as an integer, we store it as is with a large scale
|
---|
| 795 |
|
---|
| 796 | // scaledValue = 2 * 2 * mantissa
|
---|
| 797 | scaledValue.SetU64( 4 * mantissa );
|
---|
| 798 |
|
---|
| 799 | // scale = 2 * 2 * 2^(-exponent)
|
---|
| 800 | BigInt_Pow2(&scale, -exponent + 2 );
|
---|
| 801 |
|
---|
| 802 | // scaledMarginLow = 2 * 2^(-1)
|
---|
| 803 | scaledMarginLow.SetU32( 1 );
|
---|
| 804 |
|
---|
| 805 | // scaledMarginHigh = 2 * 2 * 2^(-1)
|
---|
| 806 | optionalMarginHigh.SetU32( 2 );
|
---|
| 807 | }
|
---|
| 808 |
|
---|
| 809 | // the high and low margins are different
|
---|
| 810 | pScaledMarginHigh = &optionalMarginHigh;
|
---|
| 811 | }
|
---|
| 812 | else
|
---|
| 813 | {
|
---|
| 814 | // if we have no fractional component
|
---|
| 815 | if (exponent > 0)
|
---|
| 816 | {
|
---|
| 817 | // 1) Expand the input value by multiplying out the mantissa and exponent. This represents
|
---|
| 818 | // the input value in its whole number representation.
|
---|
| 819 | // 2) Apply an additional scale of 2 such that later comparisons against the margin values
|
---|
| 820 | // are simplified.
|
---|
| 821 | // 3) Set the margin value to the lowest mantissa bit's scale.
|
---|
| 822 |
|
---|
| 823 | // scaledValue = 2 * mantissa*2^exponent
|
---|
| 824 | scaledValue.SetU64( 2 * mantissa );
|
---|
| 825 | BigInt_ShiftLeft( &scaledValue, exponent );
|
---|
| 826 |
|
---|
| 827 | // scale = 2 * 1
|
---|
| 828 | scale.SetU32( 2 );
|
---|
| 829 |
|
---|
| 830 | // scaledMarginLow = 2 * 2^(exponent-1)
|
---|
| 831 | BigInt_Pow2( &scaledMarginLow, exponent );
|
---|
| 832 | }
|
---|
| 833 | // else we have a fractional exponent
|
---|
| 834 | else
|
---|
| 835 | {
|
---|
| 836 | // In order to track the mantissa data as an integer, we store it as is with a large scale
|
---|
| 837 |
|
---|
| 838 | // scaledValue = 2 * mantissa
|
---|
| 839 | scaledValue.SetU64( 2 * mantissa );
|
---|
| 840 |
|
---|
| 841 | // scale = 2 * 2^(-exponent)
|
---|
| 842 | BigInt_Pow2(&scale, -exponent + 1 );
|
---|
| 843 |
|
---|
| 844 | // scaledMarginLow = 2 * 2^(-1)
|
---|
| 845 | scaledMarginLow.SetU32( 1 );
|
---|
| 846 | }
|
---|
| 847 |
|
---|
| 848 | // the high and low margins are equal
|
---|
| 849 | pScaledMarginHigh = &scaledMarginLow;
|
---|
| 850 | }
|
---|
| 851 |
|
---|
| 852 | // Compute an estimate for digitExponent that will be correct or undershoot by one.
|
---|
| 853 | // This optimization is based on the paper "Printing Floating-Point Numbers Quickly and Accurately"
|
---|
| 854 | // by Burger and Dybvig http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656&rep=rep1&type=pdf
|
---|
| 855 | // We perform an additional subtraction of 0.69 to increase the frequency of a failed estimate
|
---|
| 856 | // because that lets us take a faster branch in the code. 0.69 is chosen because 0.69 + log10(2) is
|
---|
| 857 | // less than one by a reasonable epsilon that will account for any floating point error.
|
---|
| 858 | //
|
---|
| 859 | // We want to set digitExponent to floor(log10(v)) + 1
|
---|
| 860 | // v = mantissa*2^exponent
|
---|
| 861 | // log2(v) = log2(mantissa) + exponent;
|
---|
| 862 | // log10(v) = log2(v) * log10(2)
|
---|
| 863 | // floor(log2(v)) = mantissaHighBitIdx + exponent;
|
---|
| 864 | // log10(v) - log10(2) < (mantissaHighBitIdx + exponent) * log10(2) <= log10(v)
|
---|
| 865 | // log10(v) < (mantissaHighBitIdx + exponent) * log10(2) + log10(2) <= log10(v) + log10(2)
|
---|
| 866 | // floor( log10(v) ) < ceil( (mantissaHighBitIdx + exponent) * log10(2) ) <= floor( log10(v) ) + 1
|
---|
| 867 | const tF64 log10_2 = 0.30102999566398119521373889472449;
|
---|
[834] | 868 | tS32 digitExponent = (tS32)(ceil(tF64((tS32)mantissaHighBitIdx + exponent) * log10_2 - 0.69));
|
---|
[823] | 869 |
|
---|
| 870 | // if the digit exponent is smaller than the smallest desired digit for fractional cutoff,
|
---|
| 871 | // pull the digit back into legal range at which point we will round to the appropriate value.
|
---|
| 872 | // Note that while our value for digitExponent is still an estimate, this is safe because it
|
---|
| 873 | // only increases the number. This will either correct digitExponent to an accurate value or it
|
---|
| 874 | // will clamp it above the accurate value.
|
---|
| 875 | if (cutoffMode == CutoffMode_FractionLength && digitExponent <= -(tS32)cutoffNumber)
|
---|
| 876 | {
|
---|
| 877 | digitExponent = -(tS32)cutoffNumber + 1;
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | // Divide value by 10^digitExponent.
|
---|
| 881 | if (digitExponent > 0)
|
---|
| 882 | {
|
---|
| 883 | // The exponent is positive creating a division so we multiply up the scale.
|
---|
| 884 | tBigInt temp;
|
---|
| 885 | BigInt_MultiplyPow10( &temp, scale, digitExponent );
|
---|
| 886 | scale = temp;
|
---|
| 887 | }
|
---|
| 888 | else if (digitExponent < 0)
|
---|
| 889 | {
|
---|
| 890 | // The exponent is negative creating a multiplication so we multiply up the scaledValue,
|
---|
| 891 | // scaledMarginLow and scaledMarginHigh.
|
---|
| 892 | tBigInt pow10;
|
---|
| 893 | BigInt_Pow10( &pow10, -digitExponent);
|
---|
| 894 |
|
---|
| 895 | tBigInt temp;
|
---|
| 896 | BigInt_Multiply( &temp, scaledValue, pow10);
|
---|
| 897 | scaledValue = temp;
|
---|
| 898 |
|
---|
| 899 | BigInt_Multiply( &temp, scaledMarginLow, pow10);
|
---|
| 900 | scaledMarginLow = temp;
|
---|
| 901 |
|
---|
| 902 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
| 903 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | // If (value >= 1), our estimate for digitExponent was too low
|
---|
| 907 | if( BigInt_Compare(scaledValue,scale) >= 0 )
|
---|
| 908 | {
|
---|
| 909 | // The exponent estimate was incorrect.
|
---|
| 910 | // Increment the exponent and don't perform the premultiply needed
|
---|
| 911 | // for the first loop iteration.
|
---|
| 912 | digitExponent = digitExponent + 1;
|
---|
| 913 | }
|
---|
| 914 | else
|
---|
| 915 | {
|
---|
| 916 | // The exponent estimate was correct.
|
---|
| 917 | // Multiply larger by the output base to prepare for the first loop iteration.
|
---|
| 918 | BigInt_Multiply10( &scaledValue );
|
---|
| 919 | BigInt_Multiply10( &scaledMarginLow );
|
---|
| 920 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
| 921 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
| 922 | }
|
---|
| 923 |
|
---|
| 924 | // Compute the cutoff exponent (the exponent of the final digit to print).
|
---|
| 925 | // Default to the maximum size of the output buffer.
|
---|
| 926 | tS32 cutoffExponent = digitExponent - bufferSize;
|
---|
| 927 | switch(cutoffMode)
|
---|
| 928 | {
|
---|
| 929 | // print digits until we pass the accuracy margin limits or buffer size
|
---|
| 930 | case CutoffMode_Unique:
|
---|
| 931 | break;
|
---|
| 932 |
|
---|
| 933 | // print cutoffNumber of digits or until we reach the buffer size
|
---|
| 934 | case CutoffMode_TotalLength:
|
---|
| 935 | {
|
---|
| 936 | tS32 desiredCutoffExponent = digitExponent - (tS32)cutoffNumber;
|
---|
| 937 | if (desiredCutoffExponent > cutoffExponent)
|
---|
| 938 | cutoffExponent = desiredCutoffExponent;
|
---|
| 939 | }
|
---|
| 940 | break;
|
---|
| 941 |
|
---|
| 942 | // print cutoffNumber digits past the decimal point or until we reach the buffer size
|
---|
| 943 | case CutoffMode_FractionLength:
|
---|
| 944 | {
|
---|
| 945 | tS32 desiredCutoffExponent = -(tS32)cutoffNumber;
|
---|
| 946 | if (desiredCutoffExponent > cutoffExponent)
|
---|
| 947 | cutoffExponent = desiredCutoffExponent;
|
---|
| 948 | }
|
---|
| 949 | break;
|
---|
| 950 | }
|
---|
| 951 |
|
---|
| 952 | // Output the exponent of the first digit we will print
|
---|
| 953 | *pOutExponent = digitExponent-1;
|
---|
| 954 |
|
---|
| 955 | // In preparation for calling BigInt_DivideWithRemainder_MaxQuotient9(),
|
---|
| 956 | // we need to scale up our values such that the highest block of the denominator
|
---|
| 957 | // is greater than or equal to 8. We also need to guarantee that the numerator
|
---|
| 958 | // can never have a length greater than the denominator after each loop iteration.
|
---|
| 959 | // This requires the highest block of the denominator to be less than or equal to
|
---|
| 960 | // 429496729 which is the highest number that can be multiplied by 10 without
|
---|
| 961 | // overflowing to a new block.
|
---|
| 962 | RJ_ASSERT( scale.GetLength() > 0 );
|
---|
| 963 | tU32 hiBlock = scale.GetBlock( scale.GetLength() - 1 );
|
---|
| 964 | if (hiBlock < 8 || hiBlock > 429496729)
|
---|
| 965 | {
|
---|
| 966 | // Perform a bit shift on all values to get the highest block of the denominator into
|
---|
| 967 | // the range [8,429496729]. We are more likely to make accurate quotient estimations
|
---|
| 968 | // in BigInt_DivideWithRemainder_MaxQuotient9() with higher denominator values so
|
---|
| 969 | // we shift the denominator to place the highest bit at index 27 of the highest block.
|
---|
| 970 | // This is safe because (2^28 - 1) = 268435455 which is less than 429496729. This means
|
---|
| 971 | // that all values with a highest bit at index 27 are within range.
|
---|
[834] | 972 | tU32 hiBlockLog2 = LogBase2(hiBlock);
|
---|
[823] | 973 | RJ_ASSERT(hiBlockLog2 < 3 || hiBlockLog2 > 27);
|
---|
| 974 | tU32 shift = (32 + 27 - hiBlockLog2) % 32;
|
---|
| 975 |
|
---|
| 976 | BigInt_ShiftLeft( &scale, shift );
|
---|
| 977 | BigInt_ShiftLeft( &scaledValue, shift);
|
---|
| 978 | BigInt_ShiftLeft( &scaledMarginLow, shift);
|
---|
| 979 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
| 980 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
| 981 | }
|
---|
| 982 |
|
---|
| 983 | // These values are used to inspect why the print loop terminated so we can properly
|
---|
| 984 | // round the final digit.
|
---|
| 985 | tB low; // did the value get within marginLow distance from zero
|
---|
| 986 | tB high; // did the value get within marginHigh distance from one
|
---|
| 987 | tU32 outputDigit; // current digit being output
|
---|
| 988 |
|
---|
| 989 | if (cutoffMode == CutoffMode_Unique)
|
---|
| 990 | {
|
---|
| 991 | // For the unique cutoff mode, we will try to print until we have reached a level of
|
---|
| 992 | // precision that uniquely distinguishes this value from its neighbors. If we run
|
---|
| 993 | // out of space in the output buffer, we terminate early.
|
---|
| 994 | for (;;)
|
---|
| 995 | {
|
---|
| 996 | digitExponent = digitExponent-1;
|
---|
| 997 |
|
---|
| 998 | // divide out the scale to extract the digit
|
---|
| 999 | outputDigit = BigInt_DivideWithRemainder_MaxQuotient9(&scaledValue, scale);
|
---|
| 1000 | RJ_ASSERT( outputDigit < 10 );
|
---|
| 1001 |
|
---|
| 1002 | // update the high end of the value
|
---|
| 1003 | tBigInt scaledValueHigh;
|
---|
| 1004 | BigInt_Add( &scaledValueHigh, scaledValue, *pScaledMarginHigh );
|
---|
| 1005 |
|
---|
| 1006 | // stop looping if we are far enough away from our neighboring values
|
---|
| 1007 | // or if we have reached the cutoff digit
|
---|
| 1008 | low = BigInt_Compare(scaledValue, scaledMarginLow) < 0;
|
---|
| 1009 | high = BigInt_Compare(scaledValueHigh, scale) > 0;
|
---|
| 1010 | if (low | high | (digitExponent == cutoffExponent))
|
---|
| 1011 | break;
|
---|
| 1012 |
|
---|
| 1013 | // store the output digit
|
---|
| 1014 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
| 1015 | ++pCurDigit;
|
---|
| 1016 |
|
---|
| 1017 | // multiply larger by the output base
|
---|
| 1018 | BigInt_Multiply10( &scaledValue );
|
---|
| 1019 | BigInt_Multiply10( &scaledMarginLow );
|
---|
| 1020 | if (pScaledMarginHigh != &scaledMarginLow)
|
---|
| 1021 | BigInt_Multiply2( pScaledMarginHigh, scaledMarginLow );
|
---|
| 1022 | }
|
---|
| 1023 | }
|
---|
| 1024 | else
|
---|
| 1025 | {
|
---|
| 1026 | // For length based cutoff modes, we will try to print until we
|
---|
| 1027 | // have exhausted all precision (i.e. all remaining digits are zeros) or
|
---|
| 1028 | // until we reach the desired cutoff digit.
|
---|
| 1029 | low = false;
|
---|
| 1030 | high = false;
|
---|
| 1031 |
|
---|
| 1032 | for (;;)
|
---|
| 1033 | {
|
---|
| 1034 | digitExponent = digitExponent-1;
|
---|
| 1035 |
|
---|
| 1036 | // divide out the scale to extract the digit
|
---|
| 1037 | outputDigit = BigInt_DivideWithRemainder_MaxQuotient9(&scaledValue, scale);
|
---|
| 1038 | RJ_ASSERT( outputDigit < 10 );
|
---|
| 1039 |
|
---|
| 1040 | if ( scaledValue.IsZero() | (digitExponent == cutoffExponent) )
|
---|
| 1041 | break;
|
---|
| 1042 |
|
---|
| 1043 | // store the output digit
|
---|
| 1044 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
| 1045 | ++pCurDigit;
|
---|
| 1046 |
|
---|
| 1047 | // multiply larger by the output base
|
---|
| 1048 | BigInt_Multiply10(&scaledValue);
|
---|
| 1049 | }
|
---|
| 1050 | }
|
---|
| 1051 |
|
---|
| 1052 | // round off the final digit
|
---|
| 1053 | // default to rounding down if value got too close to 0
|
---|
| 1054 | tB roundDown = low;
|
---|
| 1055 |
|
---|
| 1056 | // if it is legal to round up and down
|
---|
| 1057 | if (low == high)
|
---|
| 1058 | {
|
---|
| 1059 | // round to the closest digit by comparing value with 0.5. To do this we need to convert
|
---|
| 1060 | // the inequality to large integer values.
|
---|
| 1061 | // compare( value, 0.5 )
|
---|
| 1062 | // compare( scale * value, scale * 0.5 )
|
---|
| 1063 | // compare( 2 * scale * value, scale )
|
---|
| 1064 | BigInt_Multiply2(&scaledValue);
|
---|
| 1065 | tS32 compare = BigInt_Compare(scaledValue, scale);
|
---|
| 1066 | roundDown = compare < 0;
|
---|
| 1067 |
|
---|
| 1068 | // if we are directly in the middle, round towards the even digit (i.e. IEEE rouding rules)
|
---|
| 1069 | if (compare == 0)
|
---|
| 1070 | roundDown = (outputDigit & 1) == 0;
|
---|
| 1071 | }
|
---|
| 1072 |
|
---|
| 1073 | // print the rounded digit
|
---|
| 1074 | if (roundDown)
|
---|
| 1075 | {
|
---|
| 1076 | *pCurDigit = (tC8)('0' + outputDigit);
|
---|
| 1077 | ++pCurDigit;
|
---|
| 1078 | }
|
---|
| 1079 | else
|
---|
| 1080 | {
|
---|
| 1081 | // handle rounding up
|
---|
| 1082 | if (outputDigit == 9)
|
---|
| 1083 | {
|
---|
| 1084 | // find the first non-nine prior digit
|
---|
| 1085 | for (;;)
|
---|
| 1086 | {
|
---|
| 1087 | // if we are at the first digit
|
---|
| 1088 | if (pCurDigit == pOutBuffer)
|
---|
| 1089 | {
|
---|
| 1090 | // output 1 at the next highest exponent
|
---|
| 1091 | *pCurDigit = '1';
|
---|
| 1092 | ++pCurDigit;
|
---|
| 1093 | *pOutExponent += 1;
|
---|
| 1094 | break;
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
| 1097 | --pCurDigit;
|
---|
| 1098 | if (*pCurDigit != '9')
|
---|
| 1099 | {
|
---|
| 1100 | // increment the digit
|
---|
| 1101 | *pCurDigit += 1;
|
---|
| 1102 | ++pCurDigit;
|
---|
| 1103 | break;
|
---|
| 1104 | }
|
---|
| 1105 | }
|
---|
| 1106 | }
|
---|
| 1107 | else
|
---|
| 1108 | {
|
---|
| 1109 | // values in the range [0,8] can perform a simple round up
|
---|
| 1110 | *pCurDigit = (tC8)('0' + outputDigit + 1);
|
---|
| 1111 | ++pCurDigit;
|
---|
| 1112 | }
|
---|
| 1113 | }
|
---|
| 1114 |
|
---|
| 1115 | // return the number of digits output
|
---|
| 1116 | tU32 outputLen = (tU32)(pCurDigit - pOutBuffer);
|
---|
| 1117 | RJ_ASSERT(outputLen <= bufferSize);
|
---|
| 1118 | return outputLen;
|
---|
| 1119 | }
|
---|