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Examples of evolutionary design
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Challenges in automated design

Mixed representations (discrete and continuous)

Genotypes of variable size

Non-obvious representation

Complex genetic operators

Complex evaluation criteria

Computationally costly evaluation

Nondeterministic evaluation
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Framsticks – general information

https://youtu.be/CrWj_l-UrN4?t=60

https://youtu.be/r5RfTmx3S4g

Developed since 1996

Authors and main developers: Maciej Komosinski and Szymon Ulatowski

Volunteers involved in development, experiments, and technical support

https://youtu.be/CrWj_l-UrN4?t=60
https://youtu.be/r5RfTmx3S4g
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Body and brain

Composed of “body” and “brain”

Body made of basic mechanical
elements

Brain made of artificial neurons

Receptors and effectors:
environment ↔ body ↔ brain
Can be simplified or customized
as needed
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Simulation – the “MechaStick” engine
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Genetics

Various genetic encodings available

Custom genetic code can be implemented with its own characteristics, biases,
mutation and crossover

For a new encoding, need to implement genotype −→ phenotype mapping
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Genetics – f0 representation

All elements directly described

Basic, internal format

“Serialization” of a Model

Supports geometric relativity

//0
p:
p:1.0
p:1.5,−0.612,0.612
p:1.5,0.612,−0.612
j:0,1,rx=−0.7854,dx=1.0,0.0,0.0
j:1,2,rx=−0.5184,rz=−1.0472,dx=1.0,0.0,0.0
j:1,3,rx=−0.5184,rz=1.0472,dx=1.0,0.0,0.0
n:j=1,d=@:p=0.25
n:p=3,d=Sin
c:0,1

Equivalent to this f1
genotype:

qX(X[@,1:1],X[Sin])

which was converted to
f0 according to the
genetic encoding
conversion graph.
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Genetics – f0 genotype–phenotype relation
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Genetics – f1 representation

Properties are local, relative

Properties propagate along the body

Control elements (neurons, sensors)
are near elements under control
(muscles, sticks)

Recursive body (tree)

Any topology of NN

Human-friendly

XXX(XX,X) X(X,RRX(X,X))
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Genetics – f1 representation “modifier” genes

R r Rotation of the branching plane by 45°

Q q Twist of the branching plane

C c Curvedness

L l Length

F f Friction

M m Muscle strength

A complete description: https://www.framsticks.com/a/al_geno_f1.html

https://www.framsticks.com/a/al_geno_f1.html
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Genetics – f1 representation example

db(,rrlMMMMXlFFFFCgX[|T:10.159,/:−1.442,1:3.562][@0:−51.595],FFFFlL
X[|0:2.744,−2:−3.181,−1:1.151][8:2.682],rrMMXlFFFFMMMMCgX[|T:−162.1
72,−1:8.977][@4:−0.573,3:0.724,fo:1],,,LLLXMMM(rrlMXlFFFFCgX[|T:−80.858,0:
4.784][@*:8.62],,,gX[0:657.704,−1:−3.466,−1:−346.898][|−6:2.895,fo:0.208],,,rrlMXl
FFFFCgX[N,si:999][|T:−78.873,0:2.585,−1:−2.867]))
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Competition goal

The competition concerns the development of an efficient
algorithm to optimize active 3D designs (i.e., simulated
agents or robots).
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Fitness function examples

genotype

↓ (simulation)

COG (center of gravity) path = [[x1, y1, z1], [x2, y2, z2], . . . , [xn, yn, zn]]

↓ (fitness function)

fitness value

Examples:

Distance Tall runners Rise-up



Automated
design

Framsticks

Competition

Participants

Results

Fitness function examples

genotype

↓ (simulation)

COG (center of gravity) path = [[x1, y1, z1], [x2, y2, z2], . . . , [xn, yn, zn]]

↓ (fitness function)

fitness value

Examples:

Distance Tall runners Rise-up



Automated
design

Framsticks

Competition

Participants

Results

Fitness function: example formulations
from FramsticksLibCompetition.py

impor t numpy as np
path = np . a r r a y ( path ) # COG path

i f s e l f . TEST FUNCTION == 3 :
r e t u r n np . l i n a l g . norm ( path [ 0 ] = path [=1]) # s imp l e example :
r e t u r n s d i s t a n c e between COG l o c a t i o n s o f b i r t h and death .

e l i f s e l f . TEST FUNCTION == 4 :
r e t u r n np . l i n a l g . norm ( path [ 0 ] = path [=1]) * np . mean ( np .maximum(0 ,
path [ : , 2 ] ) ) # s imp l e example : run f a r and have COG h igh above
ground !
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Technicalities

Source code in Python

FramsticksLib.py – a Python class providing basic operations like mutation,
crossover, and evaluation of genotypes

FramsticksLibCompetition.py – same interface, but recording the highest
achieved fitness and limiting the number of evaluation calls. This class is actually
used when evaluating algorithm performance – participants should use it

Public modules, libraries, and frameworks can be used

2 GB memory limit, single-process, single-threaded, no GPU

Runs are terminated after 100 000 evaluations, or 1 hour of computation
(excluding the time of evaluating solutions)
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Judging

10 optimization tasks

30 repeated runs per task, per entry, each run returns best fitness

These 30 best fitness values are averaged

The resulting average is normalized taking into account other submissions

The average of 10 normalized values constitutes the final score of the algorithm

Winning entries must beat the baseline (a simple EA with niching)
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Submissions

Three submissions:

TryBestEA

CaSPO (“Cascaded Structure and Parameter Optimization Based on Prior
Knowledge”)

AdaptMut+Diversity
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Submission: TryBestEA

This submission uses the f1 encoding, but other encodings can be used as well
Four different evolutionary algorithms using DEAP:
eaSimple
eaMuPlusLambda
eaMuCommaLambda
Custom strategy

Adjusting probabilities of mutation and crossover based on diversity and relative
position of average fitness to median

Perform runs using each of them (equal number of evaluations per each algorithm)

Final result is the best result found by any of the algorithms

https://en.wikipedia.org/wiki/DEAP_(software)
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Submission: CaSPO

This submission uses the f1 encoding

Initial population of diverse structures
is generated with LLMs
Each generation consists of three
steps:
1 Generate new individuals (EA1)
2 Disturb control system of top-k
individuals from EA1 (EA2)

3 Fine-tune top-k individuals from
combined EA1 and EA2

Details published in:
Xiang Shu, Yiyi Zhu, Renji Zhang, Xiang Xia, Bingdong Li, Hong Qian.
Automated Design Competition Technical Report: Cascaded Structure and Parameter
Optimization Based on Prior Knowledge.
GECCO ’24 Companion, https://doi.org/10.1145/3638530.3664054

https://doi.org/10.1145/3638530.3664054
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Submission: AdaptMut+Diversity

This submission uses the f0 encoding, but other encodings can be used as well.

Two mechanisms introduced aimed at promoting explorative capabilities:

1 Adaptive mutation strength
The mutation strength (i.e., the number of mutation operations applied to a
genotype) is adjusted during evolution
Starts from mutation strength = 1.0. If the maximal fitness of the population has
not changed by more than 1% for the last 4 generations, the mutation strength is
multiplied by 1.1. Otherwise, it is multiplied by 0.9
Mutation strength is limited to the range [1, 5], and turned into an integer number
of mutation operations using stochastic rounding
The motivation was to help the algorithm escape local optima

2 Introducing random individuals
Each mutation operation has a small probability (1%) of introducing a randomly
generated individual to the population instead of mutating the current one
Allows to explore the search space more effectively – by introducing new genetic
material

Population size = 50, tournament size = 5, pmutation = 0.8, pcrossover = 0.2.

https://en.wikipedia.org/wiki/Rounding#Stochastic_rounding
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Best solutions

Distance:
https://www.framsticks.com/files/varia/automated-design-competition-2024-best-distance.mp4

Tall runners:
https://www.framsticks.com/files/varia/automated-design-competition-2024-best-tall-runners.mp4

https://www.framsticks.com/files/varia/automated-design-competition-2024-best-distance.mp4
https://www.framsticks.com/files/varia/automated-design-competition-2024-best-tall-runners.mp4
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Individual benchmark tasks

Baseline

TryBestEA
CaSPO

AdaptMut+Divers
0

100

200

300

400

500
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CaSPO

AdaptMut+Divers
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200

400

600

800
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fun #2

Baseline

TryBestEA
CaSPO

AdaptMut+Divers
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TryBestEA
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AdaptMut+Divers
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AdaptMut+Divers
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140

150
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TryBestEA
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fun #6

Baseline

TryBestEA
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800
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fun #7

Baseline

TryBestEA
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5000

10000
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fun #8

Baseline
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1e6 fun #9

Baseline
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9.9992
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Averaged normalized performance

fun
 #1
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fun
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Aggregated performance
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Best algorithm: winning because of a better genetic encoding?

The best algorithm, as the only one, used the genetic representation f0.

Is this why this algorithm was winning?

Let us see how it performs when used with genetic representation f1 (the one employed
by all other participants).
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Aggregated performance
Including the winner that uses the less performant encoding
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