Modeling Foraminifera in Framsticks.

Genotype, phenotype, ecosystem

Maciej Komosinski Agnieszka Mensfelt

<www.framsticks.com>

Details of this research are available in [\[Kom+16;](#page-40-0) [Kom+17\]](#page-40-1) and at <www.framsticks.com/foraminifera>.

Foraminifera in the Tree of Life

[Foraminifera](#page-1-0)

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0) measure**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0) dynamics**
- **[Conclusions](#page-39-0)**
- **[References](#page-40-2)**

Chris King, <www.dhushara.com/book/unraveltree/evolutiontree.jpg>

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0) measure**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0) dynamics**
- **[Conclusions](#page-39-0)**
- **[References](#page-40-2)**

Ernst Haeckel, *Kunstformen der Natur*, 1904.

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-

Foraminifera in the Indian Ocean, Southeast Coast of Bali. Field width $= 5.5$ mm. Microphotographie personnelle by Psammophile.

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-

Tests of foraminifera extracted sand from the beach of Ngapali (Myanmar). Microphotographie personnelle by Psammophile.

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0) dynamics**
- **[Conclusions](#page-39-0)**
- **[References](#page-40-2)**

Star sand on Hoshizuna-no-hama, Iriomote, Okinawa. Own work by Geomr.

[Foraminifera](#page-1-0)

- **[Genotype-to](#page-9-0)phenotype**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
- **[Conclusions](#page-39-0)**
-

Spiculosiphon oceana, a species of giant foraminiferan from the Mediterranean Sea. (A) General view of the holotype and the paratype (from left to right, respectively) of Spiculosiphon oceana. (B) Detail of capitate region of the holotype, showing the globelike, central structure and the radiating tracts of spicules. A giant foraminifer that converges to the feeding strategy of carnivorous sponges. Zootaxa 3669 (4): 571–584. doi:10.11646/zootaxa.3669.4.9

Motivations: why Foraminifera?

- **[Genotype-to](#page-9-0)phenotype**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-
- single-celled organisms
- abundant as fossils for the last 540 million years (since the earliest Cambrian)
- diverse morphologies, from 100 micrometers to 20 centimeters
- catch their food with a network of thin pseudopodia
- 4,000 species: 40 species are planktonic (float in the water), others are benthic (bottom of the ocean)
- applications: biostratigraphy, paleoclimatology, paleoceanography, bioindicators, oil exploration
- much of our current knowledge about climate and past history of Earth comes from studies of foraminifera

Goal: multiscale model

• multiple scales of time and space

- **[Genotype-to](#page-9-0)phenotype**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-
- time **Macroevolution** < 1 cm $<$ Ontogenesi < 1 mm $<$ **Momboganacic** $< 10 \text{ µm}$ space
- integration of existing knowledge on foraminiferal physiology and ecology, following qualitative and quantitative approaches
- testing hypotheses on different levels and asking questions!

Genotypes and phenotypes

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

...

$X(XX,RX(X,X))$

//3 5 aakyaabzakvzaabzdyzzxyabcdforwizehaaaaabhzz

//0 p:sh=2,sx=0.6,sy=0.6,sz=0.3,z=3.4,vr=0.8,0.8,0.4 p:sh=2,sx=0.1,sy=0.1,sz=0.1,vr=0.8,0.8,0.4 p:sh=2,sx=0.1,sy=0.1,sz=0.1,vr=0.8,0.8,0.4 j:0,1,sh=1,dx=0.45,dy=0.45,dz=−0.4

j:0,2,sh=1,dx=−0.45,dy=0.45,dz=−0.4

The hierarchy of genetic encodings in Framsticks

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

[Conclusions](#page-39-0)

Specialized genetic operators for each genetic encoding

Adding foraminiferal genetics to Framsticks

[Population](#page-33-0)

[References](#page-40-2)

Foraminifera morphology

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

[References](#page-40-2)

2D and 3D numerical models of the growth of foraminiferal shells (Labaj, Topa, Tyszka, and Alda. *Computational Science*, ICCS, 2003)

Foraminifera growth model – 2D

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

2D and 3D numerical models of the growth of foraminiferal shells (Labaj, Topa, Tyszka, and Alda. *Computational Science*, ICCS, 2003)

Foraminifera growth model – 3D

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

[Conclusions](#page-39-0)

[References](#page-40-2)

2D and 3D numerical models of growth of foraminiferal shells (Labaj, Topa, Tyszka, and Alda. *Computational Science*, ICCS, 2003)

Parameters of the model – genes

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-
- \bullet N number of chambers
- K_x scaling factor
- K_v scaling factor
- K_z scaling factor
- \bullet TF translation factor
- $\bullet \Delta \phi$ deflection angle
- \bullet $\Delta\beta$ rotation angle

Foraminifera genotype and phenotype

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

Genotype-to-phenotype mapping analysis

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

In each visualization:

- 32 x 32 genotypes were generated
- 5 out of 7 genes were kept constant
- 2 genes were varied

Genotype-to-phenotype mapping – $\overline{\Delta\phi}$ and $\Delta\beta$

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0)

Phenotypes 9.9 ա*յ*աստ, ցցց ցց ց Phenotype distances projected into 3D

Genotype-to-phenotype mapping – \overline{TF} and $\Delta\phi$

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

Phenotypes

Phenotype distances projected into 3D

Genotype-to-phenotype mapping – \overline{TF} and $\Delta\beta$

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

Phenotypes

Phenotype distances projected into 3D

Genotype-to-phenotype mapping – summary

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Population](#page-33-0)

- low *locality* of the mapping (different topologies of genetic and phenetic spaces; many discontinuities)
- \bullet discontinuities are disadvantageous from search and optimization point of view $-$ a smooth landscape is good for evolution
- locality of biological genotype-to-phenotype mapping?

Results published in [\[Kom+16\]](#page-40-0).

Similarity measure

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0)

• Comparing individuals facilitates:

- classifying morphologies
- inferring dendrograms
- **o** discovering clusters
- **phenotype-to-genotype mapping analysis**
- Other domains of application
	- computer vision
	- bioinformatics
	- chemistry

Similarity measure – the algorithm

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0)**
-
-
- Organism model
	- Undirected graph
- Algorithm
	- Alignment of the structures
	- Construction of the matching function
	- Calculation of dissimilarity components

Algorithm – the matching function

[Foraminifera](#page-1-0)

```
Genotype-to-
phenotype
```
[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0)

[References](#page-40-2)

SORT(P_i , $i \in \{1, 2\}$, descending by vertex degree) SORT(groups in P_i , $i \in \{1,2\}$ with the same vertex degree descending by neuron-count) REPEAT

FIND U, V – groups of parts in P_1 , P_2 with the same, highest possible, degree and with parts not matched yet

```
COMPUTE DIST(U, V)REPEAT
```
FIND the first part $u \in U$ which is yet unmatched FIND the first part $v \in V$ which is yet unmatched FIND min_for_ $u = min(u, V)$ FIND min_for_ $v = min(v, U)$ $MATCH(u, min_{or}u)$ $MATCH(v,min-for_v)$ UNTIL all parts in U or all parts in V are matched

UNTIL all parts in the smaller set are not matched

Dissimilarity components

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

- \bullet d_V number of vertices
- \bullet d_D vertex degree
- \bullet d_N count of the neurons
- \bullet d_G geometrical distance

$$
dissim = w_V * d_V + w_D * d_D + w_N * d_N + w_G * d_G
$$

Fuzzy vertex degree

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

[Conclusions](#page-39-0)

[References](#page-40-2)

Fuzzy vertex degree

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

(a) Sorting by vertex degree

(b) Sorting by fuzzy vertex degree

Fuzzy vertex degree

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

[Conclusions](#page-39-0)

[References](#page-40-2)

distance=25.81

(a) Old matching

distance=24.42

⁽b) New matching

Dissimilarity matrix

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0) measure

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

[Conclusions](#page-39-0)

[References](#page-40-2)

Foraminifera reproduction cycle

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0)

Diagram showing a generalised foraminifera life cycle note alternation between a haploid megalospheric from and a diploid microspheric form.

Redrawn from Goldstein 1999.

Algorithm

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

[Conclusions](#page-39-0)

Investigation of population dynamics – assumptions

[Foraminifera](#page-1-0)

- **[Genotype-to](#page-9-0)phenotype**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0) dynamics**
-
-
- foraminifers and nutrients are simulated as agents
- foraminifers can actively move
- they must accumulate a sufficient amount of energy to reproduce
- haploid and diploid generations alternate
- two species with different behavioral strategies: hibernating and/or moving randomly in shortage of nutrients (food)

Experiments were performed on the eVolutus platform $[Top+16]$.

Population dynamics – experiments

[Foraminifera](#page-1-0)

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

The number of runs in which a given species (moving:hibernating) survived for each combination of parameter values.

Population dynamics – experiments

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0)

[Population](#page-33-0) dynamics

Population dynamics – experiments

[Genotype-to](#page-9-0)phenotype mapping

[Similarity](#page-23-0)

[Life cycle](#page-31-0) [Population](#page-33-0)

dynamics

[Conclusions](#page-39-0)

feeding rate $= 0.1$ ranges $= 5.8$

Live demo (desktop) <http://www.framsticks.com/foraminifera>

Live demo (mobile) <http://www.framsticks.com/foraminifera>

[Foraminifera](#page-1-0)

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0)**
- **[Life cycle](#page-31-0)**
- **[Population](#page-33-0) dynamics**
-
-

Menu cnhance visualization" option is enabled. reticulopodia are shown as large disks and positions of nutrients are indicated by cuboids.

More information at www framsticks com/foraminifera

World size is 10 mm Showing real-time x 2400.

Text display: Show description and status

Very slow Paused Normal Very fast Fast Reload current show Medium Low Energy transfer per second 0.001 0.002 ≈ 29 $=109$ = 189

Conclusions

[Foraminifera](#page-1-0)

- **[Genotype-to](#page-9-0)phenotype mapping**
- **[Similarity](#page-23-0)**
-
-
- **[Conclusions](#page-39-0)**
-

• Results of experiments

- populations generally follow Lotka-Volterra dynamics
- competition for food tends to eliminate less adapted species
- revealed differences and discontinuities in topologies of genetic and phenetic spaces
- The model
	- initial stage of research, needs further calibration
	- integrates existing knowledge on foraminiferal physiology and ecology
	- enables testing of hypotheses on different levels and across scales
- Further work
	- development of foraminifera genetic representation
	- voxel-based similarity measure
	- comparison of similarity measures
	- development of foraminifera algorithmic model

References I

[Foraminifera](#page-1-0)

[Similarity](#page-23-0)

[Population](#page-33-0)

[References](#page-40-2)

[Kom+17] Maciej Komosinski et al. "Multi-agent simulation of benthic foraminifera response to annual variability of feeding fluxes". In: *Journal of Computational Science* 21 (2017), pp. 419–431. issn: 1877-7503. DOI: [10.1016/j.jocs.2016.09.009](https://doi.org/10.1016/j.jocs.2016.09.009). URL: <http://www.framsticks.com/files/common/SimulationForaminiferaFeedingFluxes.pdf>.

[Top+16] Paweł Topa et al. "eVolutus: A New Platform for Evolutionary Experiments". In: *Parallel Processing and Applied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland, September 6–9, 2015. Revised Selected Papers, Part II*. Ed. by Roman Wyrzykowski et al. Springer, 2016, pp. 570-580. ISBN: 978-3-319-32152-3. DOI: [10.1007/978-3-319-32152-3_53](https://doi.org/10.1007/978-3-319-32152-3_53).