Body symmetry – studies in the Framsticks simulator

Wojciech Jaskowski Maciej Komosinski

www.framsticks.com

Details of this research are available in [JK06; JK08].

Model components

Framsticks

Reminder of the creature model

Symmetr itself

Static symmetry

Motivatio

Approach

Motion

Motivation

Approach

Further research

References

Body

- Parts (3D location & orientation)
- Joints
- Brain
 - Neurons (embodied or not)
 - Connections

Model components

Framsticks

Reminder of the creature model

Symmetr itself

Static symmetry

Motivatio

Approach

Motion

Motivations

Approach

Further research

References

Body

- Parts (3D location & orientation)
- Joints
- Brain
 - Neurons (embodied or not)
 - Connections

Properties

Physical and biological: lengths, sizes, masses, etc.

Model constraints

Framsticks

Reminder of the creature model

Symmetry itself

Static symmetry

Motivation

Approach

Caperintents

Motion symmetry

Motivation

Approach

Further research

- at most one Joint can directly connect two Parts
- each Joint must be connected with two distinct Parts
- all Parts must be directly or indirectly connected with each other

Native simulation engine – *MechaStick*

Framsticks

Reminder of the creature model

Symmetr itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivation

Approach

Further research

- physics-based: create real-world feeling to intuitively understand behaviors
- not necessarily very accurate but fast performance matters demo
- Parts: atomic physical objects
- Joints: description of internal forces and constraints, visualized as sticks

Native simulation engine – *MechaStick*

Framsticks

Reminder of the creature model

Symmetr itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

- physics-based: create real-world feeling to intuitively understand behaviors
- not necessarily very accurate but fast performance matters demo
- Parts: atomic physical objects
- Joints: description of internal forces and constraints, visualized as sticks

- rigid bodies: no
- volume bodies: no
- collision detection within creatures: no

Symmetry

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivatio

Approach

Motion symmetry

Motivation

Approach

Further research

References

Figure: Vitruvian Man

Symmetry. What's that?

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

Definition

Symmetry is an intrinsic property of a mathematical object which causes it to remain *invariant* under certain classes of transformations (such as rotation, reflection, inversion, or more abstract operations).

Symmetry in various disciplines

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations Approach

Motion symmetry

Motivations Approach

Further research

References

Figure: The Taj Mahal, Agra, India, 1648 r.

- Physics
- Math
- Music
- Poetry
- Architecture

Symmetry in various disciplines

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations Approach

Motion symmetr

Motivations Approach

Further research

References

Figure: The Taj Mahal, Agra, India, 1648 r.

- Physics
- Math
- Music
- Poetry
- Architecture
- Moral symmetry (tit for tat)

Symmetry

Reminder of the creatur model

Symmetry itself

Static symmetr Motivations

Approach

Experiment

Motion symmetry

Motivations

Approach

Further research

References

Herman Weyl, "Symmetry"

Symmetry is an idea which has guided man through the centuries to the understanding and the creation of **order**, **beauty** and **perfection**.

Symmetry in biology

Framsticks

Reminder of the creature model

Symmetry itself

Static symmetry Motivations Approach

Motion symmetry

- Motivations Approach
- Further research

References

Figure: Symmetry – a popular evolutionary concept.

- Popular evolutionary concept
- Usually bilateral symmetry (the bilateria)
- Oldest known symmetrical organism: Vernanimalcula (600 mln years ago)
- Notable asymmetrical exceptions: sponges.

Sponges

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

Approach

Experiment

Motion symmetry

Motivations Approach

Further research

References

Figure: Sponges

Symmetry everywhere?

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivation

Approach

Further research

- Animals are symmetrical only superficially and only in a macro scale
- Asymmetry in chemistry
- Alice's cat
- DNA is clockwise

What is on the other side of looking glass?

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations Approach Experiments

Motion symmetry

Motivations Approach Further resear

Figure: On the other side

- Is the reflected world possible?
- Let us reflect the whole universe...from stars till atoms...

What is on the other side of looking glass?

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations Approach Experiments

Motion symmetry

Motivations Approach Further resear

References

Figure: On the other side

- Is the reflected world possible?
- Let us reflect the whole universe...from stars till atoms...
- A reflection of neutrino is impossible \rightarrow reflected world is impossible. . .

What is on the other side of looking glass?

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry Motivations Approach Experiments

Motion symmetry

Motivations Approach Further resear

References

Figure: On the other side

- Is the reflected world possible?
- Let us reflect the whole universe...from stars till atoms...
- A reflection of neutrino is impossible \rightarrow reflected world is impossible...
- unless we also reflect the arrow of time...

Framsticks

Reminder of the creati model

Symmetry itself

Static symmetry

Motivations

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

An open problem.

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

Motivations

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

• An open problem.

• Females of some species prefer males with the most symmetrical sexual ornaments.

Framsticks

Reminder of the creature model

Symmetry itself

Static symmetry

Motivations

Approach

Motion symmetry

Motivation

Approach

Further research

- An open problem.
- Females of some species prefer males with the most symmetrical sexual ornaments.
- For humans, there are proved positive correlations between facial symmetry and health and
- between facial symmetry and perception of beauty

Framsticks

Reminder of the creature model

Symmetry itself

Static symmetry

Motivations

Approach

Motion symmetry

Motivation

Approach

Further research

- An open problem.
- Females of some species prefer males with the most symmetrical sexual ornaments.
- For humans, there are proved positive correlations between facial symmetry and health and
- between facial symmetry and perception of beauty
- Intuition: bilateral symmetry resulted from the direction of movement of living creatures

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivations

Approach

Motion symmetry

Motivations

Approach

Further research

- An open problem.
- Females of some species prefer males with the most symmetrical sexual ornaments.
- For humans, there are proved positive correlations between facial symmetry and health and
- between facial symmetry and perception of beauty
- Intuition: bilateral symmetry resulted from the direction of movement of living creatures
- Proof: positive correlations between locomotive efficiency and morphological symmetry

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivations

Approach

Motion symmetry

Motivations

Approach

Further research

References

• An open problem.

- Females of some species prefer males with the most symmetrical sexual ornaments.
- For humans, there are proved positive correlations between facial symmetry and health and
- between facial symmetry and perception of beauty
- Intuition: bilateral symmetry resulted from the direction of movement of living creatures
- Proof: positive correlations between locomotive efficiency and morphological symmetry
- If so, why in the world of flowers symmetry (usually radical) is so common? Certainly not for locomotion.

Numerical measure of symmetry - motivations

Framsticks

Reminder of the creatur model

Symmetr itself

Static symmetry

Motivations

Approach

Motion

Motivation

Approach

Further research

- Common language is capable to express various degrees of symmetry, but no general numerical symmetry definition exists
- Natural, binary notion of symmetry is insufficient for research
- Numerical measure of symmetry could allow determining the extent to what an object is symmetrical, but also...
- if one object is more symmetrical than another.

Numerical measure of symmetry - motivations

Framsticks

Reminder of the creatur model

Symmetr itself

Static symmetry

Motivations

Approach

Motion

Motivations

Approach

Further research

References

- Common language is capable to express various degrees of symmetry, but no general numerical symmetry definition exists
- Natural, binary notion of symmetry is insufficient for research
- Numerical measure of symmetry could allow determining the extent to what an object is symmetrical, but also...
- if one object is more symmetrical than another.

Symmetry is not such a popular concept in artificial worlds, so in order to study the phenomenon of symmetry and its implications, there is a need for defining a **numerical**, fully **automated** and **objective** measure of symmetry for creatures living in artificial environments

More motivations

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivations

Approach

Motion symmetry

Motivations

Approach

Further research

- A tool for researcher (earlier: "similarity" measure)
- Possible research applications:
 - Do symmetrical creatures move faster/further/more reliably?
 - Do symmetrical creatures perform better in environments they were not evolved in?
 - Does evolution produce more symmetrical creatures in worlds with difficult terrain/bigger/smaller gravitation?
 - ...and more

Creature's model (framsticks)

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

Only skeleton is taken into account.

Solid 3D objects

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry Motivations

Experiments

Motion symmetry

Motivations

Approach

Further research

Framsticks

Reminder of the creatu model

Symmetr itself

Static symmetry

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

• The Symmetry Condition. If c is perfectly bilaterally symmetrical, then sym(c) = 1.0.

Framsticks

Reminder of the creatu model

Symmetr itself

Static symmetry Motivations

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

- The Symmetry Condition. If c is perfectly bilaterally symmetrical, then sym(c) = 1.0.
- The Asymmetry Condition. If c is completely asymmetrical then sym(c) = 0.0.

Framsticks

Reminder of the creatu model

Symmetr itself

Static symmetry Motivations

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

- The Symmetry Condition. If c is perfectly bilaterally symmetrical, then sym(c) = 1.0.
- The Asymmetry Condition. If c is completely asymmetrical then sym(c) = 0.0.
- The Common Sense Condition. If c_1 is more symmetrical than c_2 , then $sym(c_1) > sym(c_2)$.

Framsticks

Reminder of the creatu model

Symmetr itself

Static symmetry Motivations

Approach

Motion symmetry

Motivation

Approach

Further research

- The Symmetry Condition. If c is perfectly bilaterally symmetrical, then sym(c) = 1.0.
- The Asymmetry Condition. If c is completely asymmetrical then sym(c) = 0.0.
- The Common Sense Condition. If c_1 is more symmetrical than c_2 , then $sym(c_1) > sym(c_2)$.
- The Proportional Difference Condition. The difference between $sym(c_1)$ and $sym(c_2)$ should correspond to the difference in anatomical symmetry between c_1 and c_2 .

Framsticks

Reminder of the creatu model

Symmetr itself

Static symmetry Motivations

Approach

Motion symmetry

Motivations

Approach

Further research

- The Symmetry Condition. If c is perfectly bilaterally symmetrical, then sym(c) = 1.0.
- The Asymmetry Condition. If c is completely asymmetrical then sym(c) = 0.0.
- The Common Sense Condition. If c_1 is more symmetrical than c_2 , then $sym(c_1) > sym(c_2)$.
- The Proportional Difference Condition. The difference between $sym(c_1)$ and $sym(c_2)$ should correspond to the difference in anatomical symmetry between c_1 and c_2 .
- The Scalability Condition. The proposed measure should be robust against scaling: for creature c_2 that is a scaled version of c_1 (body enlarged or diminished), we expect $sym(c_2) = sym(c_1)$.

Reminder of the creatu model

Symmetry itself

Static symmetry Motivations Approach

Motion symmetry

Motivation

Approach

Further research

References

Let us denote symmetry of a creature c about plane p as sym(c, p). We say that "a creature is symmetrical" if it is symmetrical about **any plane**, therefore we are looking for a plane that yields the highest symmetry:

$$sym(c) = \max_{p}(sym(c,p))$$

(1)

Creature's model

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

Looking for matching sticks...

How to compute sym(c, p)? (1)

How to compute sym(c, p)? (2)

Reminder of the creat model

Symmetry itself

Static symmetry Motivations

Approach

Experiments

Motion symmetry

Motivation

Approach

Further research

References

How to compute sym(c, p)? (3)

Framsticks

Reminder of the creat model

Symmetr itself

Static symmetry Motivations Approach

where

Motion symmetry

Motivation

Approach

Further research

References

$$sym(c, p) = \max_{\Pi} \left(rac{\sum_{(s_1, s_2) \in \Pi} w_{s_1 s_2} sim(s_1, s_2)}{\sum_{(s_1, s_2) \in \Pi} w_{s_1 s_2}}
ight)$$

$$w_{s_1s_2}=\left\{egin{array}{cc} \mathit{len}(s_1)+\mathit{len}(s_2) & \mathrm{if} & s_1
eq s_2\ \mathit{len}(s_1) & \mathrm{if} & s_1=s_2 \end{array}
ight.$$

$$sim(s_1, s_2) = \exp \frac{-dist^2(s_1, s_2)}{(\alpha \cdot s_f)^2}$$
(4)

(2)

(3)

where α is a constant, and s_f is a creature scale factor.

Sample landscape

Reminder of the crea model

Symmetry itself

Static symmetry Motivations Approach

Motion symmetry

Motivations

Approach

Further research

References

Figure: In order to find the plane of the highest symmetry, we sample the 3-dimensional (α, β, t) space for each creature stick and then perform a local search to further improve the best found plane.

Illustration of symmetry planes (1)

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry Motivations

Experiments

Motion symmetry

Motivations Approach

References

Figure: Sample creatures, estimation of their symmetry planes and symmetry values. Values of symmetry are: 1.0, 1.0, 0.99

Illustration of symmetry planes (2)

Reminder of the creatu model

Symmetry itself

Static symmetry

Experiment

Motion symmetry

Motivation

e ..

References

Figure: Values of symmetry are: 0.97, 0.82

Illustration of symmetry planes (3)

Reminder of the creatu model

Symmetry itself

Static symmetry

Approach

Experiment

Motion symmetry

Motivations

Further researc

References

Figure: Values of symmetry are: 0.70, 0.39

Illustration of symmetry planes (4)

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

References

A random set of individuals

Reminder of the creatu model

Symmetr itself

Static symmetry Motivations

Experiment

Motion symmetry

Motivations

Further researc

References

Figure: 30 diverse creatures arranged horizontally according to their values of symmetry (the most symmetrical on the right).

Symmetry in human design and evolution

Figure: Distribution of symmetry values among 84 creatures (38 designed, 46 evolved).

Evolved creatures

Reminder of the creatu model

Symmetry itself

Static symmetr Motivations Approach Experiments

Motion symmetry

Motivations Approach

References

Figure: Evolved creatures. Constructs with the highest symmetry are usually simple.

Designed creatures

Reminder of the creatur model

Symmetr itself

Static symmetry Motivations

Experiment

Motion symmetry

Motivations

Further research

References

Figure: Designed creatures with symmetry of 1.0.

Motivations

Framsticks

Reminder of the creatur model

Symmetr itself

Static symmetry

Motivation

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

- Operates on the phenotype in motion (opposed to: symmetry of genotype)
- Characterizes motion (a feature of the motion pattern).
- Other: whether (to what degree) the movement is periodic or chaotic, how dynamic, effective it is
- Implications:
 - understanding the evolution on Earth
 - methods of locomotion both in living animals and designed robots

Static symmetries

Figure: Symmetry planes of the four considered creatures. Symmetry values are given in brackets.

3D paths

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

- Motivatio
- Approach
- Experiments

Motion symmetry

- Motivations
- Approach
- Further research

References

Figure: Sample 3D paths for four creatures.

2D paths

Framsticks

Reminder of the crea model

Symmetry itself

Static symmetry

Motivatio

Approach

Motion symmetry

Motivations

Approach

Further research

References

Figure: 10 paths for four considered creatures.

Symmetry (3df) over time

Reminder of the creat model

Symmetry itself

Static symmetry

Motivation

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

Figure: The values of symmetry over time.

2D paths with symmetries

model

Symmetry itself

Static symmetry

Motivatio

Approach

Motion symmetry

Motivations

Approach

Further research

Figure: The creature 2D paths (red) with vertical planes shown (green).

Smoothed paths

itself

Static symmetry

Motivatio

Approach

Motion symmetry

Motivations

Approach

Further research

Figure: The original paths (red) and the ones smoothed using a low pass filter (blue).

Movement directions

Figure: Movement directions based on the smoothed paths over time.

Vertical (1df) symmetry over time

Reminder of the creatu model

Symmetr itself

Static symmetry

Motivatio

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

Figure: The values of vertical (1df) symmetry over time.

Static symmetries

Figure: Symmetry planes of the four considered creatures. Symmetry values are given in brackets.

Final symmetry values (soft 1df symmetry)

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

Table: Soft dynamic 1df symmetries (soft 1df), their standard deviations and maximal and minimal values.

creature	soft 1df	std.dev.	min	max
Basic Quadruped	0.777	0.063	0.588	0.950
Bulldog	0.475	0.062	0.162	0.768
Rototiller	0.688	0.109	0.154	0.932
Imunus Katehe	0.327	0.119	0.090	0.737

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivatio

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

MechaStick

• experiments in 2001: diverse ways of movement evolved

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

Motivation

Approach

Motion

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved

Framsticks

Reminder of the creatu model

Symmetry itself

Static symmetry

Motivation

Approach

Motion

symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Experiments

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)
 - evolving movement turned out to be even more difficult! :o
 - elasticity of MechaStick was so important!

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)
 - evolving movement turned out to be even more difficult! :o
 - elasticity of MechaStick was so important!
 - sticks as cylinders: rolling ("passive")...and stability phase does not help

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)
 - evolving movement turned out to be even more difficult! :o
 - elasticity of MechaStick was so important!
 - sticks as cylinders: rolling ("passive")... and stability phase does not help
 - sticks as cuboids: instability of simulation, oscillations, and...rolling ("active")

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

Further research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)
 - evolving movement turned out to be even more difficult! :o
 - elasticity of MechaStick was so important!
 - sticks as cylinders: rolling ("passive")...and stability phase does not help
 - sticks as cuboids: instability of simulation, oscillations, and...rolling ("active")
 - many simulation parameters, each of them is important
 - interdependence between mass, gravity, collision parameters, muscle strength and speed

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

Motion symmetry

Motivations

Approach

urther research

References

- experiments in 2001: diverse ways of movement evolved
- were they really diverse?
- mostly simple creatures (a few sticks... large constructs are inefficient)
- most interesting ones were designed by hand and NNs were evolved
- new discovery: unexpected numerical instability
- ODE
 - high expectations (accuracy, volume bodies, self-collisions)
 - evolving movement turned out to be even more difficult! :o
 - elasticity of MechaStick was so important!
 - sticks as cylinders: rolling ("passive")... and stability phase does not help
 - sticks as cuboids: instability of simulation, oscillations, and...rolling ("active")
 - many simulation parameters, each of them is important
 - interdependence between mass, gravity, collision parameters, muscle strength and speed
 - rolling is a local optimum (so far) demo
- lots of lessons learned...and weeks of simulation.

Further research

Framsticks

Reminder of the creatur model

Symmetry itself

- Static symmetry
- Motivations
- Approach
- Experiments

Motion symmetry

- Motivation
- Approach
- Further research

References

- For which objectives (speed and locomotion, predation, height, etc.) evolution promotes symmetrical creatures?
- Is symmetry beneficial for creatures evolved spontaneously?
- Does symmetry emerge for creatures evolved spontaneously? (evolve, observe, surprise!)
- Which genetical encodings promote symmetry?
- Symmetry as a component of fitness formula.
- Encoding that preserves symmetry. Comparison with other encodings.

References I

[JK08]

Framsticks

Reminder of the creatur model

Symmetry itself

Static symmetry

Motivation

Approach

- and the second s

Motion symmetry

Motivation

Approach

Further research

References

[JK06] Wojciech Jaskowski and Maciej Komosinski. Measuring symmetry of moving stick creatures. Research report RA–20/06. Poznan University of Technology, Institute of Computing Science, 2006.

Wojciech Jaskowski and Maciej Komosinski. "The Numerical Measure of Symmetry for 3D Stick Creatures". In: Artificial Life Journal 14.4 (Fall 2008), pp. 425–443. DOI: 10.1162/art1.2008.14.4.14402. URL:

http://www.framsticks.com/files/common/NumericalMeasureSymmetry3DCreatures.pdf.