Emergence and self-organization in Framsticks

Maciej Komosinski

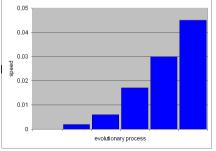
www.framsticks.com

Study #1

Case A Cases B and C Analysis

- Provided:
 - Basic building blocks (sticks, neurons, connections)
 - Fitness function (selection, reproduction)
 - Environment
 - Change
- Emergence of *locomotion*
- Self-organization of
 - Body design
 - Brain control
 - Body and brain coupling/cooperation

Study #1, analysis


Study #1 Study #1, analysis

- See sampleevol_hq.avi, evolutionary_stages.gen
- We got:
 - Body design appropriate for walking
 - Brain, sensors, muscles evolved to obtain high speed
 - Neural control adjusted to control a walking body (coordination!)
 - Emergence of *walking* (fitness was *speed*)
 - \bullet Another environment \to another emergent phenomenon (rolling, swimming, flying, problem solving, \ldots)
- Analysis reveals
 - Redundancy
 - Hidden interconnections and relations
 - · Evolution does not have to proceed towards complexity
 - Evolution can discover new ideas and drop them
 - Evolution may be unable to discover obvious ideas, it is a monotonic, limited process
 - Solutions (agents) are not strictly optimal

Study #1, analysis

Study #1 Study #1, analysis

- See sampleevol_hq.avi, evolutionary_stages.gen
- We got:
 - Body design appropriate for walking
 - Brain, sensors, muscles evolved to obtain high speed
 - Neural control adjusted to control a walking body (coordination!)
 - Emergence of *walking* (fitness was *speed*)
 - \bullet Another environment \to another emergent phenomenon (rolling, swimming, flying, problem solving, . . .)
- Analysis reveals
 - Redundancy
 - Hidden interconnections and relations
 - Evolution does not have to proceed towards
 - Evolution can discover new ideas and drop t
 - Evolution may be unable to discover obvious
 - Solutions (agents) are not strictly optimal

Study #2

Study #1

Study #2

Case A Cases B and C Analysis

- Provided:
 - Agents: consumers and food
 - Environment
 - consumer reproduction based on energy (food) found
 - food added at a constant rate
 - Change
- Self-organization of ?
- Emergence of ?

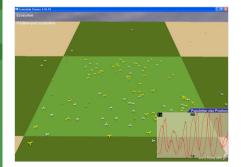
Study #2

Study #2

Case A Cases B and C Analysis

References

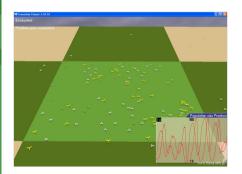
Three cases

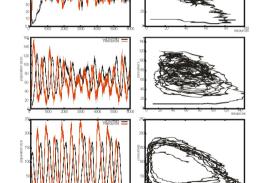

- A. Consumers' ability to ingest food constant
- Consumers' ability to ingest food evolved
 - B. Consumer reproduction: random location
 - C. Consumer reproduction: close to parent

Study #2. Case A

Case A

Analysis




Study #2. Case A

Case A Cases B and C Analysis

References

4000

For more details, see [Bac06].

Study #2. Cases B and C

Study #2 Case A

Cases B and C Analysis

References

 \bullet Case B. Eat more and reproduce! $\ddot{\smile} \rightarrow$ extinction

Study #2. Cases B and C

Case A Cases B and C Analysis

- \bullet Case B. Eat more and reproduce! $\ddot{\hdots} \rightarrow$ extinction
- $\bullet\,$ Case C. Selection on groups. Some groups do "B", but some...do not. \to stability.

Study #2. Cases B and C

Case A Cases B and C Analysis

- \bullet Case B. Eat more and reproduce! $\ddot{\smile} \rightarrow$ extinction
- $\bullet\,$ Case C. Selection on groups. Some groups do "B", but some...do not. \to stability.
- A single change in rules causes the emergence of a totally different system behavior!

Study #2 Analysis

Case A Cases B and C Analysis

- Emergent population dynamics: periodic changes. (Un)stability. Attractors. Chaos. Sensitivity analysis. Group behaviors. Swarming. Extinction. Group selection. Food chain. Geographical differentiation. Tragedy of the commons. Restraint. Altruism.
- microscale = individual, macroscale = population, mesoscale = groups

References I

Study # Case A Cases B and C Analysis

References

[Bac06]

Walter de Back. "Eco-evolutionary experiments with situated agents". MA thesis. 2006. URL: http://www.framsticks.com/files/common/MSc_deBack_EcologyEvolution.pdf.