Framsticks simulation

Szymon Ulatowski

www.framsticks.com

Simulation goals

Goals

Building blocks

Environment

Forces

Simulation step

Collisions

Simulation engines

Muscles

Energy

- Physics-based: create real-world feeling to intuitively understand behaviors
- Not necessarily very accurate, but fast performance matters

Building blocks

Goals

Building blocks

- Environment
- Forces
- Simulation step
- Collisions
- Simulation engines
- **Muscles**
- Energy

- "Parts" (atomic physical objects)
- "Joints" (description of internal forces and constraints, visualized as sticks)
- Environment (static objects, water)

Building blocks

Building blocks

Environment

- Building blocks
- Environment
- Forces
- Simulation step
- Collisions
- Simulation engines
- **Muscles**
- Energy

Environment

Goals

Building blocks

Environment

Forces

Simulation step

Collisions

Simulation engines

Muscles

Energy

- Water:
 - Buoyant force (effectively "cancels" gravity for creatures)
 - Resistance depending on the orientation (creatures can push themselves forward)

• Dynamic environment: not directly, can be made of other simulator objects (interactions handled by the experiment script)

Forces

Building blocks

Environment

Forces

Simulation step

Collisions

Simulation engines

Muscles

Energy

Axtangent - displacement from the initial contact point

Simulation step

Building blocks

Environment

Forces

Simulation step

Collisions

Simulation engines

Muscles

Energy

Determine all forces in the current state (t)

Update velocity values for all objects $(v_t=v_{t-1}+F/m)$ Calculate new state $(x_{t+1}=x_t+v_t)$

Collisions

Goals

Building blocks

Environment

Forces

Simulatior step

Collisions

Simulation engines

Muscles

Energy

Detection:

- Part⇔Environment (including ground and water)
- Part⇔Part (between different objects)

Effects:

- Physical: controlled directly by the simulator
- User-defined: can be handled by the experiment script

MechaStick vs. ODE (Open Dynamics Engine, www.ode.org)

Goals

Building blocks

Environment

Forces

Simulation step

Collisions

Simulation engines

Muscles

Energy

ODE:

- Much more realistic
- True solid bodies with accurate collisions
- Rigid stick connections
- Slower

Muscles

Building blocks

Environment

Forces

Simulatior step

Collisions

Simulation engines

Muscles

Energy

Joint total rotation (Tx,Ty,Tz) = joint rotation (rx,ry,rz) + muscle rotation (mx,my,mz) · Signal

Can do a full 360° rotation for the input signal $-1\ ..+1$

Creature energy balance

